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Autovole processes in deprivation plasma coatings

Autowave processes that arise when depositing plasma coatings are considered. Composite cathodes and
stainless steel cathodes were used for the production of coatings. Microhardness measurements were made
aong and across the sample in an amount up to 50 pieces. Microhardness plots are periodic structures with a
wavelength of the order of 10°* m. The diffusion coefficient is of the order of 10 m?/s, i.e. we have a system
with small diffusion. The deposition of coatings in a plasma is a thermodynamically nonequilibrium process
in an open system. The nonlinearity of the equations arises from the motion of the interface and the small dif-
fusion of surface atoms. In this case, an autowave process arises. The experimental and theoretical results ob-
tained by us fit into the model of macroscopic localization of plastic flow. In this model it is shown that the
localization of plastic flow in metals and aloys has a pronounced wave character. The theory of crystalliza-
tion of a cylinder of finite dimensions developed by us relates to problems with a moving interface and is
called the Stefan problem. From a mathematical point of view, boundary-value problems of this type are fun-
damentally different from the classical problems of heat conduction or diffusion. Due to the dependence of
the size of the flow transfer region on time, classical methods of separating variables and integral Fourier
transforms are not applicable to this type of problems, since, remaining within the framework of classical
methods of mathematical physics, it is not possible to coordinate the solution of the equation with the motion
of the phase boundary boundary. The motion of the boundary of the phase difference leads to a nonlinearity
of the system of equations, which leads to the appearance of autowaves.
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Introduction

The terms «autowave process», «autowave» (AW) were proposed by R.V. Khokhlov, athough the the-
ory of autowaves was initiated by mathematicians — the work of R. Fisher (1937), A.N. Kolmogorov,
G.I. Petrovsky and |.S. Piskunov (1937), N. Wiener and A. Rosenbluth (1946), A. Turing (1952) — long
before their experimental discovery [1]. Subsequently, the AWP theory became an integral part of the theory
of self-organization or synergetics[2—4].

A large class of AW-media can be conditionally described with the help of the following scheme. In an
open distributed system, energy or a substance rich in energy comes from outside. These flows are controlled
by the local properties of the regulating surface, or, more accurately, of the boundary layer of small thick-
ness. In turn, the local properties of the surface depend both on the temperature waves, the concentration po-
tential propagating along the thin boundary layer, and on the processes occurring in the substrate.

In the second class of AW media, surface effects are not so pronounced. Local feedback provides the
presence of an N-shaped characteristic of the medium with a falling section of «negative» resistance in any
elementary volume. Such media and spatio-temporal structures include the self-oscillating Belousov-
Zhabotinsky reactions, domainsin the electron-hole plasma of semiconductors, and a number of others[2].
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Thethird class includes complex multiphase mediain which nonequilibrium and AWP are supported by
laser radiation energy, ion plasma energy, as in our experiments, thermochemical reactions and other
sources. Such phenomena are determined not only by diffusion and heat transfer, but also by hydrodynamic
flows, in particular convection, evaporation, boiling, surface tension. The formation of structures involving
surface phenomena was considered in the monograph [5] and by usin [6].

Thus, an autowave is one of the results of self-organization in thermodynamically active
nonequilibrium systems. Thisis a self-sustaining wave process that exists in nonlinear media containing dis-
tributed energy sources. The period, wavelength, propagation velocity, amplitude and other characteristics of
the autowave are determined exclusively by local properties of the medium.

In addition to the motion of the combustion front, autowave processes include vibrational chemical re-
actions in active media, propagation of the excitation pulse along the nerve fiber, waves of chemical signal-
ing in the colonies of certain microorganisms, autowaves in ferroelectric and semiconductor films, popula-
tion autowaves, epidemics and many other phenomena [7-16].

Such a diversity of AWP leads to a variety of mechanisms of their origin, which are not always under-
stood and not always described by simple mathematical models. This is the case with many AWP in con-
densed media and systems.

In this paper we consider the occurrence of AWP in the deposition of plasma coatings. This question
has not been raised by anyone except our work [6], where some experimental results are partially reflected.

Autowaves in the active distributed kinetic system

The basis of models [1] describing the processes in the active distributed kinetic system are the equa-
tions of material balance:
%:Fi(xl,xz,...,xn)—divli. D
Here, x; are interacting components, I is the flux of the i-th component:

;i =VX; _ZDik gradx, , 2
k=1
where V — isthe directed velocity of the component and D;, — isthe matrix of the diffusion coefficients.
In the simplest case of a one-dimensiona space, equations (1)—2) are written asfollows:

OX; 0 (< OX:;
—=F (X, X, X )+ — D, (X, X5y, X )— |. 3
61: |( 11 72 n) 6[,(% |k(1 2 n) GrJ ()

The boundary conditions of systems (1)—(3) are determined by specific problems, but the conditions of
«impenetrability» of the boundaries of afiniteinterval [0, L]:
OX
—,,=0. 4
ot it @
Under these conditions, the system is as autonomous as possible and the nature of the AWP is least af -
fected by the influence of the borders.
If the mixing inside the «volume» [0, L] occurs rapidly enough, then in any part of it the processes are
synchronous and the system is described by so-called «point» equations [1]:

%: R (X0 Xg0eems Xy ). 5)

sy Ap

Formally, from system (3) to (5) it is possible to go over with Dy, — . Physically, this means that the
transition to (5) corresponds to the zero approximation with respect to the ratio of the characteristic diffusion
times and chemical processes.

Dissipative structures for systems with small diffusion

In the monograph [14] an attempt is made to create a unified theory of dissipative Turing-Prigogine
structures for systems of parabolic and hyperbolic equations with small diffusion. For this purpose, specia
asymptotic methods are devel oped for investigating the existence and stahility problems of highly modal sta-
tionary regimes in singularly perturbed systems, which make it possible to obtain very subtle assertions
about the unlimited growth of the number of stable dissipative structures (both stationary and periodic in
time) with decreasing diffusion coefficients and with other fixed parameters.
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Asamodel system in [14], an equation of the type (3):
ou o’u
—=vD—+F(u). 6
5 P W (6)
Here the parameter v>0 is responsible for the proportiona change in the diffusion coefficients. The
basic assumption about boundary value problem (6) is that u = O isits only spatially homogeneous equilibri-

um state, globally exponentially stable within the framework of the point model (5).
Macrolocalization of plastic flow

The monograph [12] shows that the macroscopic localization of the plastic flow has an autowave char-
acter and appears in all deformable materials, and the type of autowave locaization is determined by the
strain hardening law acting at the corresponding stage of the plastic flow process (Fig. 1).

Figure 1. Formation of a high-amplitude fixed maximum of localization
at the parabolic stage in asingle crystal of Fe-Si [12]

The deformed state of plasma coatings is described in detail in[17].

The experimental results described in the monograph [12] point to severa important circumstances re-
lated to plastic deformation:

— plastic deformation of metals and alloys throughout the process reveals a tendency to localization in

different forms;

— the number of forms of localization of the plastic flow of all materials studied to date does not exceed

four;

— the implementation of each form is determined by the deformation hardening law in force at this

stage.

Perhaps the most interesting form of localization of plastic flow is that which is observed at the stage of
linear strain hardening of mono- and polycrystalline materials. Schematically, this form of localization is
shown in Figure 2. It can be seen that the localization picture has all the features of the wave process and can
be characterized by the wavelength A, the propagation velocity V,y, and the frequency ® = 2r V a/A.

Figure 2. Coordinated motion with a constant velocity V,,, aong the loading axis of the localization system «,, spaced
apart at adistance A, at the stage of linear hardening in a sample of asingle-crystal Fe-Ni [12]
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Results of the experiment

For the application of coatings, composite cathodes and cathodes made of 12X18H10T steel were used.
With the help of these cathodes, coatings were applied on the NNB-6.611 unit on a steel substrate in argon
and nitrogen gas for 40 minutes.

The microhardness of the coating was measured on a HV S-1000 A microhardness by the Vickers meth-
od along, across and along the diagonal of the samples. About 50 samples were studied. Some characteristic
results are shown in Figures 3 and 4.

Figure 3. Results of measuring the microhardness of the sample Zn-Cu-Al + 12X18H10T

Figure 4. Results of measuring the microhardness of the Cu + 12X18H10T sample

Discussion of experimental results

We consider the problem of crystallization of a deposited coating in the form of a cylinder of finite di-
mensions with a moving interface. The nonstationary diffusion egquation describing this process in a moving
cylindrical coordinate system moving in accordance with the law p(t) has the form:

2
a_C:D af.}_li(ra_cj , (7)
ot 0z ror\_ or
where D — isthe diffusion coefficient.

Theinitia and boundary conditions are chosen in the general form:

C(r,z,t)|o=9(r, 2); (8)
C(r.z.t) | e=v(z.1); ©)
C(r2,t) Lo=1.(r1); (10)
C(r,2,t) |y =v2(111). (11)

The functions B(t), ¢(r,z),y(z,t),y,(r.t) and v,(r,t) are assumed to be continuous. We seek the so-
lution of the problem in the form:
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(rzt)=>C( o), (12)
k=0
where A, aretheroots of equation
o (A4R)=0 (13)
and 1,(1,R) isazero-order Bessel function satisfying equation:
1d[ I (yr)
——=2 |+ 1,(Ayr)=0; 14
rdr{ a | o (For) (14)
R
Ek(z,t)zj'ck (r,z,t) 15 (Aor)rdr . (15)
0
Applying (15) and taking (12) and (13) into account, we reduce equation (7) to the form:
1oC, &°C, =~ _
——t= +®,(z,t)-C,(z,t). 16

Using the substitution C, = C‘ke‘Dt and transforming the boundary conditions similarly, we obtain the
following problem:

%a—tk: p +@, (z,1); (17)
Co(2.1)ho=0(2) (18)
Co(2,t) Lo=T1(1); (19)
C~'k (Z’ t) |z:3(t)=§’2 (t)’ (20)

inarea D:(t>0,0<z<f(t)).

We seek the solution of the problem (17)—(20) in the form of a sum of potentials of the first and second
kind, and a so the two potentials of the double Iayer'

‘

(8
__4D(t-1) dé'l'

~ 1 d) 4Dt t ;
C,( \/_j Je de+ j dt ! \/7
N 1 j‘ y4 22 K,(t)dt+ J‘ z—-PB(7) n_[zztj(ﬁ)r])zK (t)dt (21)
ZNES O[D(t—r)]s’2 ' 4\/_ 2[D(t-0)" 2\ WET
Using conditions (19), (20), we obtain a system of integral equations:
BN O G = |
() = 2D 4\/— I o ]3,2u K,(t)dT;
QLORIG) t B ()
5 K (t) 1 B(t) B(T) 4D(t—r) 1 B(t) ~4D(t-1)
H(t) = K,(t)d 75€ K(ndt, (22
75(0) = MI[Dt i () ”ml[o(t_r)] (Dde,  (22)

where

70 = vl(t)——j 4’(5) g - jdr{%.ew(mdé;

[B)-¢f t ‘ z [pwy-gf
73(t) = vz(t)——j “’@) o ge- o j%.ewwg.

Eliminating from the first equation of system (22) and substituting in the equation K, (t) , we have:
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=01 PO, 0 g BO i o
0 M_I[D t-9)]" fjﬁe e 23)
t O 0!
+RJ' B(®) e 4D(t-) J‘ —B(Tl) 3/2e4'3(t-f)|<2(rl)dr1 dr.
84 [D(t-v) [D(t-1)]
Introducing the notation
B(t) e
a0 =700 J_I[D(t— o (e e (24)
and calculating the integral in (23), we obtain
K (t) L FBO-pE) r By A )
Z fj G Ko(@de+ H[D(t_ o Ky()dt=q(t). (25
Denotlng,
=1 f)=2Dq(t), K(tx) = PO=PO ¢ AT B (26)
2D’ RN T Jr (t-1)* ’
we obtain the integral equation
Kz(t)—IK(t,r) K,(t,t)dt= f(t). (27)

0
Theintegral equation (27) isVolterrain C(0,¢), if and only if:
t
Itm.([K(t,r)dt =0

Indeed, taking into account that e <1 for z >0, it is easy to show that the above equality holds. Then
for equation (27) there exists a unique solution that has the form:

Ka0) = Koy (O 29)
Kao®)= £0);

Koa(t) = j. K(t,t) Kyo()dt;

K,,(t) = j K(t,7) K,y (t)d;
Kz,n (1) = j. K(t,1) KZ,n—l(T)d T

and (28) converges absolutely and uniformly in the topology C(0,¢). Then

D i BO s (g
2\/;'([[D(t—r)] Zf; (o). 9

Performing the inverse transformation, we finally have:

© 1 t (22
th ZJO { {ZD\/_J‘e 4pt (t x

K, (t) = 2DF,(t) +

k=0 TCO
o 1 RI(1R) b 17T, o, i
(£¢(r,§)lo(xokr)rerdg+ NS !driﬁe de+
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2 [2-B(x)]
(1)

1 z a*m
+4\/;'<[|:D(t—’t):|3/2b 4\/_'[[Dt r]

Thus, an anaytical solution is obtained for the problem of crystallization of a cylinder of finite dimen-
sions. We shall consider the isothermal case and homogeneous boundary conditions. In this case, the prob-

|em takes the form:
2
ot 0z ror\_ or

C(r,z,t)|_,=0

C(r,z,t) | _s=C, = const

C(r,z,t)|,_ 0=C = const

C(r,z,1) |Z 0=
where C, isthe value of the concentration of adatoms on the sample surface.

The integra transforms found by us made it possible to reduce the problem (31)—«32) to Voltaire's
equations of the second kind in a Banach space. Then the general solution of the problem takes the form:

se PR, (n)de |} (30)

(32)

= const

o RI (}\‘ R C (2*5)2
(r,z,t) lo( e dt[—=L_eDle #4tge 4
;0 { {2\/@ I I\/ -1 :
2 . (33)
+ e TK( e PEIK (t)dt|}b.
4\/;'([[D(t_'[):|3l2 1 4\/_".|:D t_ :|3/2 2( )
We need to caculate the integrals:
Lo N (Z*i_)i
l,=[dr] tfre e dg (34)
0 0
t 2
_ Z ~4D(t-t) .
l,=|———>¢€ K, (t)dT; (35)
2 _!.‘[D(t_’[):FIZ 1( )
t . [2h(v)]
I, =J.L(T)3lze 40t K, (t)d. (36)
o[D(t—’C)]

For large measurement timest, the integrals I, are I, negligibly small and e — 1. Then the prob-
lem reduces to calculating the integral 1, :

[ ——

er;://ﬁ e D% dE_, c[J_ /(t)dr. (37)
-&

JaD(t-1)
1;(7) = 4D(t—r)ﬁe‘y2dy—]}e‘yzdy} , (38)

To calculate I;(t) in (37) we make a change of variables y =

where

4 z—-H
T ap(o T Jap(o)

Theintegralsin square brackets represent a function:

2 ¢ _»
erfz=—|e "’ dy. (39)
Tc ‘g

14 BecTHuk KaparaHgvHckoro yHuBepcuteTa



Autovole processes in deprivation plasma coatings

Using formula (39) and its expansion in a series, after simple cal culations we obtain:
2 (z-H)’

1/(x) =] ze VU —(z—H)e VI | (40)

Substituting (40) into (38), and calculating, we obtain:

2D
Il = T . Ul . (41)
Restricting ourselves to the first term in the sum (33), for the stationary concentration we have the fol-
lowing expression:
C,R 2r
C(r,z)==%1,] =—|. 42
(rn2)="7- ( 2 j (42)

When obtaining (42), we took into account that the equation I,(A,r)=0 implies A, =2r/R and
1,(2)=1. The radial and axial components of the concentration gradient, taking into account (42), will be

equal to:
oC 2 C, 2r
=0 | = 43
or zn l(Rj “3)
oC RC, . (2r
—=—1,—. 44
oz ~Jnz? O(Rj (44)

Equations (43) and (44) can be easily integrated from 0 to R, but it is better to analyze the wave process
using gradients. Both equations show the wave nature of the solidification of the coating.

In our experiments, approximation (5) can not be applied. Thisis clearly seen in Figures 3 and 4, where
the wavelength is of the order of 10-* m, i.e. the mass transfer rate is ~10~* my/s. Since the mass transfer rate

V ~+/D/t, for the diffusion coefficient we get the estimate D ~10"® m?s. This corresponds to the regime of
small diffusion.

Comparison of Figures 1 and 2 with Figures 1 and 4 shows their similarity. This suggests that the
mechanism of formation of autowaves in both cases has similar features and is described by Bessel functions
(Fig. 5).

Figure 5. Graphs of Bessel functions

The experimental and theoretical results obtained by usfit into the model of macroscopic localization of
the plastic flow developed in [12]. In this paper it is shown that the localization of plastic flow in metals and
aloys has a pronounced wave character. In the light-dlip, linear and parabolic strain hardening stages, as well
asin the pre-fracture stage, the localization patterns observed are different types of wave processes. Analysis
of the wave characteristics of such processes made it possible to measure the propagation velocity
(~10™ m/s), wavelength (~102 m), and establish that the dispersion relation for such waves is quadratic.

The theory of crystallization of a cylinder of finite dimensions developed by us relates to problems with
a moving interface and is called the Stefan problem [18]. From a mathematical point of view, boundary-
value problems of this type are fundamentally different from the classical problems of heat conduction or
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diffusion. Due to the dependence of the size of the flow transfer region on time, classical methods of separat-
ing variables and integral Fourier transforms are not applicable to this type of problems, since, remaining
within the framework of classical methods of mathematical physics, it is not possible to coordinate the solu-
tion of the equation with the motion of the phase boundary boundary. The motion of the boundary of the
phase difference leads to a nonlinearity of the system of equations, which leads to the appearance of
autowaves.

Conclusion

The deposition of coatings in a plasma is a thermodynamically nonequilibrium process in an open sys-
tem. The nonlinearity of the equations arises from the motion of the interface and the small diffusion of sur-
face atoms. In this case, an autowave process arises. The solution we obtained about the crystalization of a
cylinder of finite dimensions using the theory of thermal potentials is valid for boundary value problems of
the first type. The solution of the second and third boundary value problems in the finite domain encounters
considerable difficulties. Studiesin this area continue to this day.

The work was carried out under the program of the Ministry of Education and Science of the Republic
of Kazakhstan. Grants No. 0118RK000063 and No. F.0780.
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C.A. I'yuenko, E.H. Epemun, B.M. IOpog, B.Y. Jlaypunac, C.C. KacsimoB, O.H. 3aBamkas

[Lna3zmadbIK KanTaMaJapabl TYHABIPY 0apbICBIHAAFbI ABTOTOJKBIHABIK YPAicTEp

TTna3ma’blk KanTamajiapibl TYHABIPY Ke3iHJe aBTOTOJKBIH YpIicTepi KapacThipbuiibl. JKaOblHabI any yiuiH
KOMIIO3MIMSUTBIK  KaTOJ[ TICH OOJIaTTaH >KacalfaH KaTOATBIH TOT OacmaiiThiH Typliiepi KOJJaHBUIIHI.
MUKpOKaTTBUIBIFEIH OJIIIEY YITiHIH OOMBI koHe KenieHeH Typae S50 per emmienai. MUKpOKATTBUIBIK KecTecl
TOJIKBIH Y3BIHABFG mamamer 1074 M ke3eriK KypblIbIMEH KepceTeni. Jubdysus koddhuumenti mamamen
107 mPfc, swrn a3 auddy3HIBIK KyHEMEH XKyMBIC KacaiiMbrz. [lma3sMaia KarTaMaHbI TYHBIDY AIUbIK
Kyilee TepMOMHAMHKAJIBIK TeHIECIereH yaepicti kepcereai. Paszanap mexapa OeiriHiH KO3FajbIChl MEH
xep OeTiHAeri aroMAapbIHbIH Kinni audGy3uscbiHaH TeHICYISPIiH KUCHIKTHIFBI TYbIHAANAbI. by xarqaiina
ABTOTOJIKBIH YpAici maiina Gomazapl. Bi3 amFaH SKCIEPUMEHTTIK jKOHE TEOPHSIIBIK HOTHKENEp IUIACTHKAIBIK
arbIMJIaFbl  MaKpOCKOIMSUIBIK OKIIayJay MofelliHe Teceneli. Bya MoJenbJe IIaCTHKAIBIK aFbIMIAFbl
OKIlIayJiayJja MeTall MCH KOCIaJa TOJKBIH CHIIATHIHBIH alKbIHIBIFBI KOPCETUIreH. Bi3 J1aMBITHII OTHIpFaH
TEOpHsl, SFHH, LWWIHHAPAIH TYNKUTKTI MeJIIepiH KpucTanIaHasIpy (aszanap/plH IeKapachlH KbIDKbIMAJIbI
Gesry MiHmeTTepiHe xkaTaipl xkoHe CredaH MiHAeTI nen aranmaiabl. MareMaTHKalbIK TYPFBICBIHAH MyHpait
TYpZeri IIETTIK ecenTep KIACCHKANBIK JKbUTYOTKI3TIIUTIK ecenTepiHeH Hemece muddysmsiman TyOereitni
JKaKchl. MemepaiH TOyenIuliK cangapblHaH KeLIipy OOJbBICHI YakKbIT aFbIHBIHBIH aybICybIHAa OalIaHBICTHI
OCBl MIHICTTEPIiH TypiHe alHBIMaibUIAp/bl 0Oy JKOHE MHTErpaliblK e3repictepaiH Dypbe KIIaCCHKAJIbIK
onicTepiH KojlaHyFa OONMaiiibl, ©MTKEHI KIACCHKAIBIK MaTeMaTHUKaNbIK (U3uKa OMICTEpIiH asChlHIA
OTHIpEIN, (ha3a OOIMIHIH IIeKapanapblH KO3FAJIBICHI MEH TEHJEYiHIH MISmIIMiH KeTiCTipy MYMKIH eMec.
Qazaymap OemiriHiH mIeKkapanap KO3FAIBICHI CBHI3BIKTBIK €MeC TeHJeyliep KyileciHe okemeni, OymaH
ABTOTOJIKBIH Maiiza Goapl.

Kinm coe30ep: aBTOTOJIKBIH, KaNTaMma, Iua3ma, 1udGy3ust, MUKPOKATTBIIBIK, KpUCTaLTH3ays, a3 quddy3uns-
JIBIK XKYHeE.

C.A. I'yuenko, E.H. Epemun, B.M. IOpos, B.U. Jlaypunac, C.C. KacsimoB, O.H. 3aBankas

ABTOBOJIHOBBIE NpouecChI MpU OCAKACHUN NJTA3MEHHBIX HOKprTI/lﬁ

PaccMarpuBatoTcs aBTOBOJIHOBBIE IIPOLIECCHI, BO3HUKAIOIIME NPU OCAKACHUM IIa3MEHHBIX TMOKPBITHH. s
HOJIY4eHHUsS HOKPBITHH HCIOJIb30BATHCH KOMIIO3MIIMOHHBIE KaTOJbl M KAaTOABI M3 HEPIKABEIOLICH CTalu.
ITpoBoxumics U3MEpEeHHsT MEKPOTBEPIOCTH BIOJIb U HOIepek obpasma B Koindectse 10 50 mryk. ['padukn
MHKPOTBEPIOCTH MPEACTABISIOT COBOH MepUOAMYECKHEe CTPYKTYPH C JIHHOM BONHBI mopsmka 107
Kosddurment muddysun nveer mopsgox 1078 m?/c, T.e. MbI nMeem crcteMy ¢ Maroit muddysueii. Ocaxe-
HHUE TOKPBITHI B ITa3Me IPeIcTaBiIseT cO00H TepMOAMHAMHYECKH HEPaBHOBECHBIM IIPOIECC B OTKPHITOH
cucteme. HemHEHHOCTh ypaBHEHHI BO3HHUKACST M3-3a ABW)KEHMS MPAHUIBI paszena a3 u manoi nuddysuu
MOBEPXHOCTHBIX aTOMOB. B 3TOM cilyyae BO3HHMKaeT aBTOBOJHOBOH mporuecc. IToiydeHHbIe HaMH dKCHEpH-
MEHTaJIbHbIE U TEOPETUYECKHE PE3YJIbTAaThl YKJIAJbIBAIOTCS B MOJENb MAaKPOCKOITMYECKOH JTOKAIU3aMH T11a-
CTHYECKOTO TeYeHMs. B 3TOH MoJeNny MokasaHo, YTO JIOKAIU3ALMs IUIACTUYECKOTO TEYEHHS B MeTalllax M
CITaBaX UMEET SIPKO BHIPAYKEHHBIN BOJIHOBOW XapakTep. PasBuTas HaMu Teopusi KpUCTAIUIN3ANUY LIMHAPA
KOHEYHBIX Pa3MepOB OTHOCHTCS K 3a[adaM C ITOJBIDKHOM rpaHuIeil pasiena ¢pa3 U HOCUT Ha3BaHHE 3ajada
Creana». C MaTeMaTHIEeCKON TOYKU 3pPEHUS KpaeBble 3aJadll TAKOTO THIA NMPHHIWIHAIBGHO OTIMYHEI OT
KIIACCHYECKHX 3aJ1ad TeIUIONpoBOAHOCTH MiH quddy3nu. BemencTsrue 3aBHCHMOCTH pa3Mepa 00IacTH Iepe-
HOCa [OTOKa OT BPEMEHH K 3TOMY THILy 3a/1ad HEIPMMEHUMBI KJIACCHUECKUE METO/BI PAa3/ICNICHUs NepEeMEH-
HBIX M MHTETpajbHbIX NpeodpazoBanuii Pypbe, Tak Kak, OCTaBasCh B PaMKax KJIACCHYECKHX METOIOB MaTe-
MaTH4ecKOH (PM3UKM, He yHaETcs COrJacoBaTh PEIICHHE YPaBHEHHUsS C JBM)KCHHEM TpaHHIbI paszena ¢as.
JIBWKeHHe TpaHuIbl pasjena (a3 NPUBOAUT K HEIMHEHHOCTH CHCTEMbl YPaBHEHHH, YTO M IIPUBOJHUT K BO3-
HHMKHOBEHHUIO aBTOBOJIH.

Kniouesvie crosa: aBTOBOIHA, TOKPHITHE, IU1a3Ma, AUGQY3HsT, MUKPOTBEPIOCTh, KPUCTAIUTH3AIHS, CHCTEMA C
Maoit mudpdysueit.
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