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Mathematical model of high-temperature melt flow
with account for short-range order nature

The problems of mathematical description of the viscous motion of the metal melt accompanied by overcom-
ing the internal friction caused by the movement of particles and overcoming the forces of their interaction
are investigated. Solutions of hydrodynamic equations involving quantum potentials of interparticle interac-
tion of atoms in melts, and quantum effects were taken into account using correlation functions of transport
coefficients such as viscosity, since they are quite closely related to the structure of matter and are the most
structurally sensitive characteristics of matter. The research consists in the fact that the correlation functions
of viscosity are justified from the point of view of the quantum statistical method. The correlation between
correlation functions and radial distribution functions is established. A mathematical model of the flow of
high-temperature melts taking into account the nature of the near order in them and the account of the second
coefficient of viscosity by methods of statistical physics is described. On the basis of theoretical studies the
parameters determining the relationship between viscosity and interatomic potential are calculated. The found
dependences allow us to determine the average values of any physical parameters, in particular, the values of
shear and volumetric viscosity.
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1. Introduction

The authors have considered the problem of solving hydrodynamic equations involving quantum poten-
tials of the interparticle interaction of atoms in melts, and quantum effects are taken into account using the
correlation functions of transfer coefficients such as viscosity, since they are rather closely related to the
structure of the substance and are the most structurally sensitive characteristic of the substance. Based on
extensive classical studies of A.R. Regel, V.M. Glazov [1] it can be stated that metal and semiconductor
melts are spatially inhomogeneous. The spatial heterogeneity is determined by their atomic-molecular char-
acter. Therefore, the physicochemical, metallurgical properties of metal and semiconductor melts should be
described taking into account the short-range order. The methods of quantum statistical physics permit to
express the coefficients of shear and volume viscosities using correlation functions [1, 2].

2. Experimental Part and Results Discussion

One of the most constructive methods for studying the physical properties of melts is computer model-
ing [3-5]. Consider one of the options for splitting the equations of hydrodynamics [6, 7] as applied to the
calculation of the melt flow in a flat channel in accordance with Figure 1.
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Figure 1. Model of melt flow in a flat channel
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Such a melt flow can be described by the following equations of dimensionless form:
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where Re =pu,H /u, H is a channel width; u, is speed; p is density; W is viscosity.
Equations (1)—(3) are integrated under the following initial and boundary conditions:
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where [ is the preset pressure gradient; ¢ is the distance from the entrance to the ledge; L is the total
length of the channel.

Equations (1)—~(3) depend on ¢ and can be solved for u,v. But the pressure p is implicitly preset, be-
cause it is not part of the equations in the form of the derivative of ¢. To exclude this, we write the equation
of continuity (1) as follows

w + ou + Al =0, where w=p +l<1)2 + uz) , according to Bernoulli's law.
ot ox 9y 2

Then equations (1)—(3) can be reduced to the following two independent systems of equations (4) and

(5), which are given for consideration below:
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where w, :p+7, w, =p+?.

Thus, these two systems of equations make it possible to model the melt flow in a flat channel. It should
be noted that boundary conditions should also be split here. We represent the split boundary conditions for
our case. For the system (4):

L odu_ dv op
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For the system (5):
2
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Now consider the melt flow in a tilting trunk. For a particular design, one can interpret and write it as
follows. Direct Oz axis along the axis of the trunk, assuming that the design of the trunk is infinitely long,
and the melt flow is directed along the axis of the trunk so that only w, of the three components u,v,w, re-
mains, therefore u =0, v=0. Let the melt flow be isothermal, then p density and viscosity W = const.

Consequently, the hydrodynamics equation can be written as:

_la_p:() _la_p:() Wa_w__la_p [82W+82W+82WJ’8_W:
’ x> 9y 9z ) oz

pox  poy dz  poz
Thus, as can be seen from the system of equations (6), the rate w is a function of x, y, only; in addition,

0. (©6)

the pressure function p is a function of z . On the basis of (6), we obtain the equation:

dﬁ:u(azwﬁz—w} ™)

dz ox’ 9y’
The right side of (7) represents a function of x, y, while the left side is a function of z . From the basic

. . d, A . L
principles of hydrodynamics, it follows that d_p = ——5 , where Ap is the pressure drop at an arbitrarily cho-
Iz
sen section; ¢ is the length of the trunk. In addition, due to the free surface of the melt, the pressure in the

channel is equal to the atmospheric pressure [8]. Since the trunk is inclined to the horizon at a certain angle

Ap

o, a volume force arises, the projection of which on the axis Oz is equal to F, = gsinoc=7. Then the

equation of motion (7) in the direction of Oz becomes:
’w  I’w
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To solve the resulting equation, boundary conditions are necessary. These conditions will be determined

by sticking of the melt to the bottom of the trunk and the absence of friction on the free surface of the melt.

Denote the depth of the flow as 4, and the width of the trunk as /,. Then the boundary conditions of the
problem can be written as follows:

w=0 aty=0,a—W:O aty=h1,a—W=0 at x =h,. 9
oy ox

Thus, equation (8) with boundary conditions (9) will describe the process of melt flow in specific de-
signs of the trunk type. This model is designed for the melting equipment of the SCR-2000 line; the drawing
of the lower trunk section is presented in Figure 2.
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Figure 2. Lower trunk cross section
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Calculations are made for the lower trunk with an inclination angle of 3°. Numerical parameters are

[Ir—a(r—h):l
2
Z:\/a2+(16h2/3)2\/832+(16-182/3)=92.8 mm, where [ is the length of the arc; a is a chord;

92.8'115—83(115—18j
2 2

2
tion per second is O =3.61 kg/s. Based on this, one can make definite the average melt flow rate, which is

equal to v, =0.45 m/s.

In the calculations, constant step-sizes were used. The time-step in the calculations was chosen to be
At =0.001. The found out results for the profiles of melt flow rates v and u in the flat channel are respec-
tively presented in Figure 3. Obtaining the steady-state flow required 3000 steps. The results show that the
proposed computational scheme is quite economical and it can be easily used to calculate the flow at suffi-
ciently low Reynolds numbers. The analysis of the data obtained shows that replacing the continuity condi-
tion by a Poisson-type pressure equation leads to a numerical scheme that is free from a complicated compu-
tational procedure.

found by the following calculations: the area of the segment S = , a=83 mm, A=18 mm,

=1029 mm’. Then the melt consump-

h is a segment arrow. Consequently, S =

YT v+

a b
Figure 3. Profiles of a) transverse v and b) longitudinal u rates

On the basis of the compressibility sum rule, one can determine how self-consistent the adopted model of
the melt system is. If the value of the volume modulus is determined correctly, then its reciprocal value is
equal to compressibility. Compressibility is important when considering the physicochemical properties of
molten metals. On the basis of [9], one may state that in a crystalline substance the bulk modulus of elasticity
is equal to the derivative of the energy in terms of volume. At the same time, the static modulus must be con-
sistent with the dynamic modulus. The dynamic modulus is calculated from the phonon dispersion ratio in
the long wave approximation. Therefore, it is strongly linked by interatomic interaction. This statement is the
essence of the compressibility rule and is well tested for crystalline metals [9]. Further studies have shown
that the sum rule is not fully satisfied for the model of metals constructed using perturbation theory in the
second order in empirical potentials. Then, the third and fourth order terms appearing in the dynamic matrix
at ¢ — 0 bring to a second order contribution. Also, the discrepancy is obtained due to the inclusion of these

contributions only when calculating static modules and neglecting them when calculating dynamic ones. The
inclusion of the higher terms of the expansion in the construction of a dynamic matrix approximates the ex-
perimental data to the theoretical ones [10—12].

The data are in good agreement with experimental ones within 10 %. These assumptions make it possi-
ble to estimate the relaxation time of the structural viscosity (i.e. the volume one). According to
Ya.l. Frenkel, the settled life of an atom #=10""" c. This value agrees well with the found relaxation time of
the volume viscosity. According to the hole theory, it can be assumed that the volume deformation of the
melt consists of two types of deformation. The first is instantaneous and retarding. The second is the defor-
mation associated with the change in the number of holes during the movement of the melt. The retarding

AVz e*AH/RT
VRT
volume of holes, AH is the increase in enthalpy due to the formation of holes. Then, if the retarding part of

part of compressibility can be calculated by the formula 3, = , where AV is the change in the
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compressibility is known, using the formula given in [11], it is possible to determine the value of the volume

viscosity W, =—, where f, is the equilibrium compressibility, ¢ is the lag time. The regime of the copper
0

melt flow is completely determined by the melt viscosity, the theoretical and experimental [12] values of
which are presented in Figure 4 and Table.

Table
Experimental [L;. and theoretical Ly, values of the shear viscosity and the theoretical value of the volume

viscosity L,

T,K W, Pa-s We, Pa-s w,,Pa-s
1358 0.005 0.0060999 0.12354
1398 0.0046 0.005847 0.11959
1438 0.0042 0.005606 0.11578
1478 0.0038 0.005374 0.11208
1518 0.0036 0.005153 0.10851
1558 0.0033 0.00494 0.10505
1598 0.0031 0.004736 0.10117
1638 0.0029 0.00454 0.09846
ur 105, Pas ur10°, Pas

A A
3

ks 4

L L L L
1350 1400 1450 1500 1550 1600 T,

a b
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Figure 4. a — the theoretical value of volume viscosity and b — the experimental one U, [9]

and the theoretical value of shear viscosity g,

Conclusions

Thus, the main problem of the mathematical description of a viscous motion of a metal melt, accompa-
nied by overcoming internal friction caused by the melt particles movement and overcoming the forces of
their interaction, is considered. Based on the cluster theory of the melt flow, a relationship between viscosity
and interatomic potential is established.
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7KakbiH TOPTINTIH TAOMFATHIH ecenKe aJ1a OTHIPbIN 0AJKbIMAHBIH KOFAPbI
TeMIePaTyPaJibl AFbIHBIHBIH MATEMATHUKAJIBIK MO/IeJTi

BenmekrepaiH KO3FalbICHIHAH KOHE OJApIbIH ©3apa OpEeKeTTECYiHiH KYIIiHEeH TYybIHIAFaH iIIKi YHKemicTi
KEHYMEH KOca JKYPeTiH MeTajul OalKbIMACBIHBIH TYTKBIP KO3FAJIBICHIHBIH MaTEMaTHKAJIBIK CHIIATTaMachl
Mmacerenepi 3eprrenai. KopbiTnanapaarsl aToMIapAblH YIIECTEC 63apa OpeKeTTeCYiHIH KBaHTTBIK OTCHIHAI-
JapbIHBIH KaTHICYBIMEH THIPOJAMHAMHKAIBIK TEHACYJEPI IICHIy JKOHE KBAHTTBIK OCEpJIep TYTKBIPIIBIK
CHSIKTBI TachIMaiaay Ko3()GUIMEHTTEPIHIH KOPPeISILMSIIBIK (yHKIMSIIApbIH HaiianaHa OThIPbI 3epTTEII],
oJIap 3aTThIH KYPBUIBIMBIMCH THIFbI3 0aiiJIaHBICTBI KOHE 3aTTHIH HEFYPJIBIM KYPBUIBIMABIK-CE3IMTaN CHIIAT-
TaMasapbl OONBIIT TaObUIa/ABl. 3€PTTEY TYTKBIPJIBIKTBIH KOPPEISLHMSIBIK (yHKUMSIAPhl KBAHTTHIK-CTATHCTH-
KaJIbIK 9Jlic TYpFbIchIHAH Herizpenni. Koppensuusiblk QyHKIusIap MeH pajauaiibsl YiecTipy QyHKIUsIapsl
apacblHa Koppelslus opHaTbuiraH. JKorapbl Temmeparypaibl OaJIKbIMaslap aFbIHBIHBIH MaTeMaTHKAJIBIK
MOJIei, OJlap/ia JKaKbIH TOPTIMTiH TAOUFATHIH €CEMKe ajla OTHIPHII KIHE CTATUCTUKAIBIK (PH3HKa d/licTepiMeH
eKIHII TYTKBIPJIBIKTHIH KO3(GHUIUCHTIH ecenke any cunartanraH. JKypri3iireH TeopusuiblK 3epTreyiep
HETi3iH/e TYTKBIPJIBIK IIEH aTOMapaliblk MOTCHLHAN apachlHAAFbl GaillaHBICTBI AHBIKTANTBIH HapameTpiep
ecenreni. TaOburFaH TOYSIAUTIKTEp Ke3 KeldreH GpU3HKalbIK ITapaMeTpiIep/iH, aTal aiTKaHIa, KbUDKY KOHE
KOJIEMIIK TYTKBIPJIBIKTHIH MOH/IEPIHIH OpTalla MOHIH aHBIKTayFa MYMKIHAIK Oepeni.

Kinm co30ep: TYTKBIPNBIK, TOTCHIWAN, THAPOAWHAMHKAIBIK TEHACYNIEp, KOMIBIOTEPIIIK MOJEIBICY,
OanKpIMaap.

C.H. llIantakos, C.I1I. Kaxxukenora, b.P. Hycyn6ekos,
JI.K. Kapab6ekosa, A.K. Xacenos, M. CtoeB

MartemaTuveckasi Mojie/ib BLICOKOTEMIIEPATYPHOI0 T€YEHHUS pacijiaBa
C Y4eTOM NPHPObI OJIHKHEr0 MOPSAIKa

HccnenoBansl mpoOIieMbl MATEMAaTHYECKOTO OMUCAHUS BS3KOTO JBIDKCHUS METAJUIMYECKOTO paciiiaBa, Co-
MPOBOXK/IAIOLIETOCS IPEO0JI0JIEHUEM BHYTPEHHEI'O TPEHHUSI, BBI3BAHHOT'O JBMXKEHHEM YaCTHIL U IPEO0JI0JIEHUEM
CWJI UX B3aUMOJEUCTBUsI. PeleHuss ruipogHaMU4eCKUX ypaBHEHUH ¢ y4acTHEM KBAaHTOBBIX IOTEHLHAIOB
MEKYaCTUYHOTO B3aHMOJICHCTBHS aTOMOB B paciUlaBaX M KBAaHTOBBIC dPPEKTHI YIHTHIBAIUCH C UCIIOIH30Ba-
HHEM KOPPEIAIUOHHBIX QYHKIMH K03 (DHUIIMEHTOR MMEPEHOCA, TAKMX KaK BA3KOCTb, IIOCKOJIBKY OHH JOBOJIBHO
TECHO CBSI3aHBI CO CTPYKTYPOH BEIIECTBA M SBJISAIOTCS HanOOJIee CTPYKTYPHO-YYBCTBUTEIBHBIMU XapaKTepH-
CTHKaMH BellecTBa. MccnenoBanusl 3aKI04aIMCh B TOM, YTO KOPPEISLUOHHbBIC (DYHKIIMH BSI3KOCTH 00OCHO-
BaHbI C TOYKH 3PEHUS] KBAHTOBO-CTaTUCTHYECKOTO METO/A. Y CTAaHOBJIEHA KOPPEIALUS MEKAY KOPPESILHUOH-
HBIMU (QYHKIOUSMH B QYHKIHSAMU pagHaibHOrO pachpenencHus. Onrucana MaTeMaTniecKas MOJelb TCUCHHUS
BBICOKOTEMITEPATYPHBIX PACILIABOB C YUETOM HPUPOJIBI OJIIMKHETO TOPSIKa B HUX U BTOPOTo Ko3huimeHra
BSI3KOCTH METOJIaMH CTaTUCTUYECKOW (u3nku. Ha OCHOBaHWH MPOBEICHHBIX TEOPETUYCCKUX HCCIICIOBAHUN
paccuuTaHbl apameTpsl, ONPEeIISIONINe CBsI3b MEXKy BA3KOCTBIO U MEKAaTOMHBIM HoTeHIuanoM. Haiinen-
HBI€ 3aBHCHUMOCTH MO3BOJIAIOT ONPEAEIUTh CPeIHHE 3HauYeHHs JTI00BIX (PU3NYECKUX IMapamMeTpoB, B YaCTHO-
CTH, 3HAYEHHUH CIBUTOBOI U 00BEMHOM BSI3KOCTH.

Kniouegvie crosa: BA3KOCTb, TIOTEHIUAN, THAPOMHAMUYECKHE YPAaBHEHHS, KOMIIBIOTEPHOE MOJCINPOBaHHE,
pacmias.
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