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Double-channel resistance-to-voltage converter for cable teraohmmeters 

The paper considers a teraohmmeter resistance converter to monitor cable insulation with an additional input 
amplifier that emits a low-frequency interference signal. Adaptive algorithms for a double-channel converter 
circuit to compensate for low-frequency interference are proposed. There are considered algorithms using 
minimax criteria and linear approximation method for estimation of interference influence. It is shown classi-
fication of algorithms according to industrial frequency interference filtering method and signal observation 
interval. There were investigated two ways of interference application: step signal from a DC voltage source 
up to 300 V and fading harmonic signal from an AC voltage source and amplifier up to 300 V. A double-
channel circuit of the resistance-to-voltage converter is found to provide a 2-fold increase in the signal-to-
noise ratio in comparison with a single-channel circuit. It is shown that the maximum deviation of readings 
for the single-channel circuit exceeds 20 % (up to 32 %) in short-term exposure to interference with ampli-
tude of up to 300 V. At the same time, the maximum deviation for the double-channel circuit can attain 17 %, 
but it does not exceed 20 %. According to GOST 3345–76, the insulation resistance measuring error in the 
range of 10 GΩ to 100 TΩ should not exceed 20 %.The advantage of the proposed double-channel converter 
is the possibility to develop new algorithms to eliminate the dependence of readings on interference effects. 
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Introduction 

A number of problems arising during monitoring the cable insulation quality by electrical resistance are 
associated with a large value of the measured resistance. One of the most important problems is the sensitivi-
ty of the input circuits of the measuring device (teraohmmeter) to low-frequency interference [1–6], which 
occurs during mutual movement of electrostatic charges that accumulate on the surface of the measuring de-
vice, cable and operator. 

The techniques to eliminate this kind of interference are the use of shields, ESD straps for the operator, 
interference filtering, and the current level in the input circuit of the device increased through an increase in 
the voltage applied to the cable [7–13]. However, these measures are not always adequate. For example, 
large coils with cable may require large shields, which limit test equipment mobility. ESD straps are effec-
tive, but poorly trained personnel can ignore the need for its use. In addition, this binds the operator to the 
device like a prisoner. An increase in voltage applied to the cable is limited since the maximum allowable 
voltage for a given cable is specified in the cable documentation. The voltage level used by the teraohmmeter 
may provide inaccurate measurement of the insulation resistance [14–19]. Interference filtering typically in-
creases the device inertia. Therefore, in case of low-frequency interference (less than 1 Hz), linear filtering is 
of little use: the time for processing the readings becomes comparable or longer than the time permissible for 
recording the readings of the device. 

Thus, development of methods to eliminate the impact of low-frequency interference on the 
teraohmmeter input circuit while maintaining low values of the test voltage (according to GOST 3345–76 
from 100 to 1000 V) is of current relevance. 

The paper considers a method of compensating for low-frequency interference that uses an additional 
channel in the cable teraohmmeter along with the main resistance-to-voltage converter (RVC), which re-
sponds to interference signal only. Signals of the primary and secondary channels can be processed in ac-
cordance with various algorithms; therefore, a compensation algorithm can be chosen to provide low sensi-
tivity to interference. 

Experimental 

Figure 1 shows a diagram of the double-channel RVC and the impact produced on it by the operator 
during monitoring of the cable insulation resistance. 
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1 — is the cable shielding; 2 — is the cable insulation material; 3 — is the conductive cable core;  
4 — is the block for electrodes; 5 — is the electrodes to connect the controlled cable to RVC;  

6 — is the operator monitoring the cable insulation resistance; 7  — is the antenna;  
8 — is the RVC; СС  — is the communication capacity between the operator and cable;  

,INS INSR C  — is the resistance and capacity of cable insulation; REFU  — is the reference voltage source;  

FR  — is the negative feedback resistance; 1 2,CH CHU U  — are output voltage of the first and second RVC  

measuring channels; DA1, DA2 — are operational amplifiers 

Figure 1. An equivalent diagram of the operator’s impact during monitoring of the cable insulation resistance 

The reference voltage source REFU  and the measured cable insulation resistance INSR  form an artificial 

current generator. The load of the current generator is a negative feedback reference resistor FR . The voltage 
drop in the resistor in steady state is: 

 F
INS REF

INS

R
U U

R
⋅= − , (1) 

where INSU  is the voltage drop across the measured cable insulation resistance. 
The output signal of the first measuring channel takes the form: 

 1 1 1 1 1sin(2 t ) sin(2 t )CH INS IF IF IF LF LF LFU U f U fU + ⋅ ⋅ π ⋅ ⋅ + ϕ + ⋅ ⋅ π ⋅ ⋅ + ϕ= , 

where 1IFU  is the voltage amplitude of industrial frequency interference; t  is time; IFf  is the voltage fre-

quency of industrial frequency interference; 1IFϕ  is the initial phase of the voltage of industrial frequency 

interference; 1LFU  is the voltage amplitude of low-frequency interference; LFf  is the voltage frequency of 

low-frequency interference; 1LFϕ  is the initial phase of the voltage of low-frequency interference. 
The signal from the antenna is supplied to the input of the operational amplifier DA2 and contains data 

on interference only. The output signal in the second measuring channel takes the form: 

2 2 2 2 2sin(2 t ) sin(2 t )CH IF IF IF LF LF LFU U f U f⋅ ⋅ π ⋅ ⋅ + ϕ + ⋅ ⋅ π ⋅ ⋅ + ϕ= , 

where 2IFU  is the voltage amplitude of industrial frequency interference picked by antenna; 2IFϕ  is the ini-

tial phase of the voltage of industrial frequency interference picked by antenna; 2LFU  is the voltage ampli-

tude of low-frequency interference picked by antenna; 2LFϕ  is the initial phase of the voltage of low-
frequency interference picked by antenna. 

The interference voltage at the outputs of the first and second measuring channels is of similar frequen-
cy, but of different amplitude and phase. 
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Figure 4. Classification of adaptive signal processing algorithms for the double-channel RVC circuit 

The variety of digital signal processing algorithms and the dependence of algorithms on different char-
acteristics of RVC and ADC make it possible to extend the list of algorithm options presented in Figure 4 as 
new studies become available. 

The installation to generate low-frequency interference was designed in order to investigate interference 
immunity of the double-channel RVC while monitoring the cable insulation resistance (Fig. 5). The installa-
tion consists of the following units: 

1) DC voltage source of up to 300 V; 
2) GW Instek SFG-2104 function generator to generate a low-frequency signal; 
3) an amplifier to amplify the signal from the generator up to 300 V; 
4) an electrode in the form of a metal cylinder to which an amplified low-frequency signal is supplied. 
As a result, the electrode generated an alternating electric field of low frequency (low-frequency inter-

ference) with an output voltage ranging from 0 to 300 V. In the experiment, the electrode base was located at 
the distance r  from the inverting input of the RVC operational amplifier. 

All studies were carried out in a shielding chamber to objectively assess the effect of artificially gener-
ated interference (low-frequency electric field), since the impact of external interference inside the shielding 
chamber was minimized. 
 

 

1 — is the electrode; G — is the generator; Amp — is the amplifier; PWR — is DC voltage source;  
RVC — is the resistance-to-voltage converter; DAQ — is the data acquisition board 

Figure 5. Diagram of the electrode charge 

Low-frequency interference was artificially generated through the short-term (<1 s) voltage supply to 
the electrode to simulate the impact of an operator monitoring the cable insulation resistance on the CVS. 
The voltage was supplied to the electrode in two ways: from a DC voltage source or from an AC voltage 
source. A short-term exposure is chosen in order to create a non-periodic damping interference signal. Due to 
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this effect, a constant component is introduced into the RVC signal, which cannot be filtered from the output 
RVC signal using averaging methods. 

The circuitry of the double-channel RVC enables simultaneous study of the single- and double-channel 
circuits. 

The output voltage of the first measuring channel was used to assess interference immunity of the sin-
gle-channel RVC circuit. This signal was filtered from industrial frequency interference by digital processing 
using a second-order linear Butterworth filter with a cut-off frequency of 30 Hz and was then averaged. The 
average signal value was used to measure the resistance in accordance with Equation (3). 

Signals of the double-channel RVC circuit were digitally processed in accordance with the algorithm 
presented in Figure 2. Industrial frequency interference was filtered similarly to the single-channel RVC cir-
cuit. Resistance converters were implemented in accordance with the T-shaped circuit shown in [21, 22]. The 
converter characteristics were as follows: voltage reference 100REFU = V; feedback resistance of the ampli-

fier 1FR =  GΩ; capacitor capacity in the integrator 50C =  pF; the measured resistance is five series-

connected resistors of the type KVM-100 GΩ ±10 %. 
Digital signal processing was performed using the USB-6002 multifunctional data acquisition device 

(8 channels, 16 bits, 50 kHz). The LabView programming environment was used for signal processing. 

Results and Discussion 

Figure 6 shows the output signals of the single- and double-channel RVC circuits in short-term expo-
sure of the electrode to DC voltage of 200 V. 
 

а)  

b)  

c)  

a — output voltage of the single-channel RVC circuit; b — output voltage 2CHU  of the second measuring  

channel of RVC; c — output voltage INSU  of the double-channel RVC circuit 

Figure 6. The output signals of the single- and double-channel RVC circuits during short-term exposure  
of the electrode to DC voltage of 200 V 
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The comparison of Figures 6a and 6b indicates similarity of the shape and frequency LFf  of low-

frequency interference captured by the first and second measuring channels. The phase shift LFΔϕ  between 
the first and second measuring channels can be observed as well. After adaptive selection of the coefficient

2k , the signals are subtracted. Figure 6c presents the result of subtracting the signal 2CHU  from the signal 

1CHU , which is an output voltage of the double-channel RVC circuit. 
The maximum deviation of the system readings affected by interference from the average value of the 

resistance measured in the absence of interference was estimated during signal processing. The maximum 
deviation for the single-channel circuit was 25 %, and that for the double-channel circuit equaled 14 %. 

With short-term exposure of the electrode to DC voltage of 300 V, the maximum deviation for the sin-
gle-channel circuit was 32 %, and that for the double-channel circuit was 17 %. 

The obtained results show that the maximum deviation of readings increases as the interference ampli-
tude grows up. 

Figure 7 shows the output signals of the single- and double-channel RVC circuits during short-term ex-
posure of the electrode to AC voltage with 300 V amplitude and 2 Hz frequency. 
 

а)  

b)  

a — output voltage of the single-channel RVC circuit; b — output voltage of the double-channel RVC circuit 

Figure 7. The output signals of the single- and double-channel RVC circuits during short-term exposure  
of the electrode to AC voltage with 300 V amplitude and 2 Hz frequency 

The maximum deviation of readings for the single-channel circuit was 11 %, and that for the double-
channel circuit was 5 %. 

Figure 8 shows the output signals of the single- and double-channel RVC circuits during short-term ex-
posure of the electrode to AC voltage with 300 V amplitude and 5 Hz frequency. 

The maximum deviation of readings for the single-channel circuit was 78 %, and that for the double-
channel circuit equaled 3.5 %. 
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а)  

b)  

a — output voltage of the single-channel RVC circuit; b — output voltage of the double-channel RVC circuit 

Figure 8. The output signals of the single- and double-channel RVC circuits during short-term exposure  
of the electrode to AC voltage with 300 V amplitude and 5 Hz frequency 

Conclusion 

According to GOST 3345–76, the insulation resistance measuring error in the range of 10 GΩ to 
100 TΩ should not exceed 20 %. The results obtained in the experimental study of the single- and double-
channel circuits of resistance-to-voltage converters show that the maximum deviation of readings for the sin-
gle-channel circuit exceeds 20 % (up to 32 %) in short-term exposure to interference with amplitude of up to 
300 V. At the same time, the maximum deviation for the double-channel circuit can attain 17 %, but it does 
not exceed 20 %. Thus, the signal-to-noise ratio for the double-channel circuit is almost twice higher than 
that for the single-channel circuit. 

The advantage of the proposed double-channel converter is the possibility to develop new algorithms to 
eliminate the dependence of readings on interference effects. 

The research is funded by the Governmental program «Science», research projects 
No. 11.3683.2017/4.6, No.11.6342.2017/8.9, FSWW-2020–0014. 
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Кабелді тераомметрлерге арналған кернеуге  
екі арналы кедергі түрлендіргіш 

Мақалада аз жиілікті бөгеуіл сигналын бөлетін қосымша кіріс күшейткіші бар кабель оқшаулауын 
бақылау үшін тераомметрдің кедергі түрлендіргішінің сұлбасы қарастырылған. Төмен жиілікті 
бөгеуілдердің орнын толтыруға мүмкіндік беретін түрлендіргіштің екі арналы сұлбасы үшін 
бейімделген алгоритмдер ұсынылған. Сонымен қатар, кедергілердің əсерін бағалау кезінде 
минимакстық критерийі, сондай-ақ сызықтық аппроксимация əдісін пайдаланатын алгоритмдер 
қарастырылған. Өнеркəсіптік жиілік кедергілерін сүзу əдісі бойынша жəне дабылдарды өңдеу 
интервалы бойынша алгоритмдерді жіктеу берілген. Кедергінің əсерінің екі түрі зерттелген: 
амплитудамен 300 В тұрақты кернеу көзінің сатылы əсері жəне күшейткішпен 300 В дейін айнымалы 
кернеу генераторынан өшетін гармоникалық əсері. Бір арналы сұлба үшін көрсеткіштердің ең жоғары 
ауытқуы 20 %-дан (32 %-ға дейін) асатын уақытта, екі арналы сұлба үшін ең жоғары ауытқу 17 %-ға 
жетуі мүмкін, бірақ 20 %-дан аспайды. МЕМСТ 3345–76 сəйкес 10 ГОм-дан 100 Том-ға дейінгі 
диапазонда оқшаулама кедергісін өлшеу қателігі 20 % аспауы тиіс. Ұсынылған екі арналы 
түрлендіргіштің артықшылығы – кедергілердің əсеріне тəуелділігін төмендететін жаңа алгоритмдерді 
əзірлеуді жалғастыруға болады. 

Кілт сөздер: оқшаулау кедергісі, кабель, кедергі, кернеу түрлендіргіші, тераомметр. 
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Двухканальный преобразователь сопротивления  
в напряжение для кабельных тераомметров 

В статье рассмотрена схема преобразователя сопротивления тераомметра для контроля изоляции ка-
беля с дополнительным входным усилителем, который выделяет низкочастотный сигнал помехи. 
Предложены адаптивные алгоритмы для двухканальной схемы преобразователя, позволяющие произ-
вести компенсацию низкочастотных помех. При этом рассмотрены алгоритмы, использующие при 
оценке влияния помех минимаксный критерий, а также метод линейной аппроксимации. Дана клас-
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сификация алгоритмов по методу фильтрации помех промышленной частоты и по интервалу обработ-
ки сигналов. Исследованы два вида воздействия помех: ступенчатое воздействие от источника посто-
янного напряжения амплитудой до 300 В и затухающее гармоническое воздействие от генератора пе-
ременного напряжения с усилителем до 300 В. Определено, что при использовании двухканальной 
схемы преобразователя сопротивления в напряжение отношение сигнал–шум увеличивается в 2 раза 
по сравнению с одноканальной схемой. Установлено, что в то время, как максимальное отклонение 
показаний для одноканальной схемы превышает 20 % (до 32 %), для двухканальной схемы может дос-
тигать 17 %, но не превышает порога 20 %. В соответствии с ГОСТ-ом 3345–76 погрешность измере-
ния сопротивления изоляции в диапазоне от 10 ГОм до 100 ТОм не должна превышать 20 %. Досто-
инством предложенного двухканального преобразователя является то, что можно продолжить разра-
ботку новых алгоритмов, которые позволят уменьшить зависимость показаний от влияния помех. 

Ключевые слова: сопротивление изоляции, кабель, помеха, преобразователь сопротивления в напря-
жение, тераомметр. 

 
 




