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Numerical modeling of thermomechanical processes in heat-resistant alloys

This article presents a numerical simulation of thermomechanical processes in heat-resistant alloys.
The authors develop the law of temperature distribution along the length of the physical body, which is
considered as a rod of alloy EI-617. The authors also investigated the dependence of the magnitude of the
elongation of the rod from a given temperature. To do this, the rod is conditionally divided into several
elements, and then the study is carried out in one area. To determine the temperature dependence, the
temperature distribution field is approximated by a full polynomial of the second degree, and approximation
spline functions are introduced. Using a temperature gradient for one element, the functional expression
characterizing the total thermal energy is written, first for the (n-1) element, then for the last n-th element.

n
The total thermal energy is expressed by the formula J = X.J; . By minimizing the total thermal energy, we
i=1
obtain a system of algebraic equations for determining the nodal values of temperatures. Applying the
obtained values, the elongation of the element due to thermal expansion is calculated. The relationship

between the temperature 7, elongation Al , «tensile» force R, and «tensile stress» o. is shown in the

work. It is shown that with increasing temperature, the above values proportionally increase.
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Introduction

Intensive development of modern technological processes in the field of metal science creates favorable
conditions for the production of more advanced heat-resistant alloys with high resistance to plastic defor-
mation and destruction under the influence of high temperatures.

This article presents the experimental temperature dependences of the coefficient of thermal expansion
and the elastic modulus of the alloy EI-617, which are determined experimentally. Taking into account the
experimental dependence of the modulus of elasticity and the coefficient of thermal expansion of the alloy
material on temperature, the problem of determining the field of temperature distribution, elongation, and
thermal stress state of a rod of limited length made of EI-617 alloy is considered.

The coefficient of thermal expansion a[%j of this alloy is strictly dependent on temperature. In [1, 2]

values are given at various temperatures. Studying experimental materials received the corresponding func-
tional dependence

1) for 200C<T<100°C, a:o,om.msXT+9’65,106(01CJ

2) for 100C<T<200°C, a:o,om.lo6XT+10,6,106(01CJ
3) for 2000C<T<300°C, a=0,015-106xT+1o,2-1o6(03

o

4) for 300C<T<400C, o =0,023-10"° xT+7,8-10_6(%j

o

5) for 400C<T<500C, & =0,013-10"° xT+11,6-10_6(%j
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6) for S00°C<T<600°C, a=0,02-10‘6xT+8,3-1o-6[%j

7) for 600C<T<700C, o =0,017-10"° XT+10’1.10-6(%j

8) for 700 C<T<800°C, & =0,012-10"° ><T+13’6.10‘6[%)
Experimental

Let’s consider a horizontal cylinder-shaped body (hereinafter referred to as the rod) of limited length
and made of heat-resistant alloy EI-617.

The thermal conductivity of the rod material is denoted by Kxx( j The coefficient of thermal

mc -

expansion of the rod material is denoted by a = a(T (x){%j The length of the rod is denoted by L(cm),

and the cross-sectional area is denoted by F (sz) . We consider the left end of the body (rod) under consid-
eration to be rigidly pinched, and the free end to the right. An axial tensile force P (kG) is applied at the free

end. We will direct the axis Ox from left to right. It coincides with the axis of the rod. Throughout the length
of the rod, the area of the lateral surface, as well as through the cross-sectional area of the right end of the

) , and the am-

rod, is exchanged with the environment. In this case, the heat transfer coefficient is h( C
mc -

bient temperature is 7, ( C ) At the left pinched end of the rod, a constant temperature 7(x =0) =7, is set
[3,4]. The calculation scheme of the problem under consideration is given in Figure 1.

h, T

at

T(x=0)=T,

Figure 1. The calculation scheme of the problem.

The purpose of this article is to determine the law of the temperature distribution along the length of the
rod under study, as well as the dependence of the rod elongation on the value of the given temperature
T (x=0)=T,. Here it is necessary to take into account the experimental dependence of the coefficient of

thermal expansion of the material of the rod on temperature. To do this, we first discretize the test rod into n-
L . . o

elements of the same length /== (cm). For example, consider one discrete element. Within each local ele-
n

ment, the temperature distribution field is approximated by a second-order full polynomial, i.e.
T(x):ax2+bx+c,OSxSI, a, b, ¢ — const. (1)

If within one local element accept that

T,=T(x=0) szT[xzéJ; T,=T(x=1) )

then within this element we can rewrite (1) in the following form
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T(x):(Dt(x)];-i_(Dj(x)Tj +(ok(x)'Tk’ OSXSZ, (3)
where ¢, (x), ?; (x) and ¢, (x) are approximate spline functions which are called form functions for a quad-

ratic discrete element with three nodes. They have the following form:

1* = 3Ix + 2x* 4lx — 4x* 2x% —Ix
(pl-(x)=—l2 ; j(x)z—l2 : 0, (x)= s 0l @)
Within one element, the temperature gradient is determined as follows:
A op.\x

a_T=a¢1(x)T;+ (D/( )T+a¢k(x)Tka OS}CSZ (5)

ox ox ox ox

For (n-1) elements we can write an expression of the functional that characterizes its total thermal energy:
K. (oT 2
J. = dv + -7 )dS 6

, I - [ ax) j ) (©)

where i=1+ (n - 1); V. is the volume of the i-th discrete element;.S... is the area of the lateral surface of

i > MUSi
the i-th element.

Now we can write an expression of a similar functional for the last #-th discrete element:

J, j ( jdmj’z’( ~T, PdS+ I%(T—Tm)zdS (7
1Si Sx:L
where S(x = L) is the cross-sectional area of the right end of the investigated body through which heat ex-

change also takes place with the environment. Then for the investigated body as a whole, the expression of
the functional that characterizes its total thermal energy has the following form:

J= Z”:J,. ®)
i=1

Now, minimizing J by the nodal temperature values, we obtain a resolving system of linear algebraic
equations:

§—£=0’i:2+(2n+1) )

Here i changes from 2, because it is considered that 7, = T'(x = 0)is given.

Results and Discussion

Using the Gauss method, solving system (9) determines the nodal temperature values. According to
them, for each local discrete element, the following integral is calculated, the essence of which is the
extension of the element due to thermal expansion:

Al = H(P, a+(pj )a +(pk ak][(pl +¢/()T+(pk T]dx 0<x<l! (10)
Then the total elongation of the test body is determined by the following formula:
A=Al (11)

It should be noted that for different values of the given temperature 7, =T (x = 0) , the corresponding value of
Al is obtained.

For the purposes of a numerical study of dependencies of Al =Al(T(x =0)=T;), we take the following
for initial data:

K, =720 /(cm C); h=10W /lem® = C} T, =40C; T(x=0)=T, =(100=800) C;

L =30cm; n=300; Z=£=0,lcm; r=1lcm; F=m" =, P=2m=2r.
n

The corresponding field of temperature distribution along the length of the rod with such initial data is shown
in Figure 2.
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Figure 2. Dependence of 7=T7(x) on T}
Table 1
Dependence between 7; and A/, R, o
Equivalent «tensile» force | Equivalent Aly(cm) at , Al
Ne| T, ( C) Al (cm)| R(kG) at which such an | «tensile stress» o= const = Elop%;tlon k= E
elongation would result | © (kG/ sz) =10,1-10"° (1 I C ) e (times)
1{ 100 | 0,014 2930,66 933,33 0,0133 0,047 1,052
2| 200 | 0,0165 3454 1100 0,0152 0,055 1,085
31 300 | 0,0193 4040,1 1286,66 0,0171 0,064 1,129
41 400 |0,02247 4703,72 1498 0,0190 0,075 1,183
51 500 | 0,0259 54322 1730 0,0209 0,086 1,239
6| 600 | 0,0297 6217,2 1980 0,0228 0,1 1,303
71 700 |0,03388 7092,2 2258,66 0,0247 0,113 1,372
8| 800 | 0,038 7954,66 2533,33 0,0267 0,127 1,423

Figure 2 shows the temperature distribution field along the length of the rod at different values of 7},
and Table 1 shows the values of A/, at different values of 7,, i.e. dependence between 7,and A/,,R,c.
Figure 2 shows that the temperature distribution field along the length of the rod will be a smooth curve.
A graphic relationship between the values of the temperature source(Tl) and the corresponding elongation
(Al,) of the rod from thermal expansion is shown in Figure 3.

When 7; =100(C°C), starting with x = 15,5(cm),i.e. at the site 15,5<x< 30(cm) there is a constant
temperature, the value of which is equal to = 40( °C ) . In this case, due to thermal expansion, the body (rod)

is extended by A/, = 0,014(cm) . For comparison, it can be noted that this extension is equivalent to the ex-
tension of the rod, if it is stretched by force R=2930,66(kG). Naturally, on the basis of Hooke's law in this
case a tensile stress of magnitude 6=933,33(kG/cm’) would arise in the cross section of the rod.

When 7, =200(°C), i.e. with an increase in the set temperature by a factor of two, a 40(°C) tempera-

ture field is observed in the area 19,2Sx£30(cm). In this case, the elongation of the body (rod) is
Al =0,0165(cm) and will be 17.657 % greater than in the case 7] =100(°C). This magnitude of elongation
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is equivalent to elongation of the rod under tensile load R=3454(kG). In this case, tensile stress would be
6 =1100kG/ cm’).

When 7; =300(°C), i.e. when to increase the value of the point temperature by three times the value
Al = 0,0193(cm) , which exceeds by 37.857 % than in the case 7, =100("C). It should also be noted that in

this case, at the site 21,1<x < 30(cm) of the body (rod), a constant temperature is observed close to the am-
bient temperature of the body (rod). In this case, the value A/, is equivalent to stretching the considered rod
with force R=4040,1(kG). In this case, the tensile stress arising in the cross sections would be
6=1286,66(kG/cm’). 1t should be noted that for ordinary steels this voltage already exceeds the propor-
tional limit.

scale x1003/2

The rod extension

T T T T T T T T
100 200 300 400 500 B0 700 B0

Temperature

Figure 3 — Graphic relationship between 7|, and A/,

When 7; =400(°C), i.e. Now increasing the value 7, four times, we have that Al, =0,02247 (cm) This
is equivalent to the elongation of the rod when it is stretched by a force whose magnitude is R=4703,72(kG).
In this case, a tensile stress of magnitude o =1498(kG/cm®) would arise in the cross sections of the rod.
Naturally for ordinary steels, this stress is considered destructive.

When 7, =500(°C), value Al, =0,02595(cm). This is 85 % more than the same value Al, at
7, =100("C). It should be noted here that in order to obtain an elongation of the rod in size
Al =0,02595 (cm) when it is stretched, it would be necessary to stretch with force R=5432,2(kG). At the
same time, tensile stress o =1730(kG/cm?) would appear in the cross sections of the rod, which is large for
ordinary steel structures.

With 7, =600(° C), the value Al, =0,0297(cm) and it will be 112.14 % more than A/, at T; =100(° C)
. Equivalent tensile force would be equal to R=6217,2(kG) and the corresponding tensile stress would be
equal to o =1980(kG/cm*) . Comparing the results obtained, it is interesting to note that when the tempera-

ture value 7, increases from 7; =100(°C) to 7, =600(°C), the values of Al,,R,o increase equally by
112.14 %.

References

1  Hosnpes B.®. Kypc tepmonunamuku / B.®. Hosapes. — M.: TIpocemienue, 1967. — 248 c.
2 Cerepnunpa JI. [Ipumenenune Metosa koneuHbIx anementos / JI. Cerepnung. — M.: Mup, 1979. — 392 c.

Cepusi «dusukay. Ne 2(98)/2020 105



B. Kenzhegulov, Jaroslav Kultan et al.

3 Kenzhegulov B. Numerical solution of problem of thermo elasticity with provision for dependencies between the factor of
heat expansion and temperature / B. Kenzhegulov // International journal of scientific articles. Science and technology — 2009. — 5.
—P.3-7.

4 Kenzhegulov B. Numeral modeling of heat mechanical condition of core of limited lengths made of heat resistant alloy ANV
-300 at presence of heat exchange, partial heat insulation, local temperature and axial spraining power / B. Kenzhegulov // Interna-
tional journal of scientific articles. Science and technology — 2009. — 5. — P. 8-14.

b. Kewxerynos, S. Kynran, J[.b. Anubues, A.I1l. KaxukeHoBa

Kpi3yra Te3iMIi KYliMaHbIH KbIIYMEXaHHKAIbIK
NPOLEeCTEPiH CAaHABIK MOJeJIbey

Makanaza KbI3yFa Te3iMIi KyHMaHbBIH JKbLIyMEXaHHKAJBIK MPOLECTePiH CaHABIK MOJCIb/CY KETipiireH.
OU-617 kyiimMacelHaH jKacalfaH CHIPHIKTHI HETi3re ajia OTHIPHII, aBTOpiap (GpU3UKaJIbIK ASHEHIH y3biHa OOMbI
XKUYy Tapally 3aHJbUIbIFBI KapaCThIPbUIFaH. BepiireH >KbUlyFa CHIPBIKTBIH y3apy IIaMAachIHBIH TOYEJIiiri
3epTTedreH. byl yIiH ChIpBIK mapTThl TypAe OipHere sneMeHnTTepre OeriHesi, COHBIH Oip Oeirine 3eprrey
xKyprizinres. Kby Tapany epiciHiH KbUIyFa TOYEIIUIriH aHBIKTay YIIiH eKiHIII PEeTTi TOJBIK IOJIMHOMMEH
anIpOKCHUMAIHS JKacaiiMbI3 XKoHE alNPOKCUMAIMSIIBIK CIUTaiH QyHKIMS eHrizeMi3. AnapiMeH (n-1) aneMenT,
COCBIH COHFBI 7 DJIEMEHT YIIiH TOJIBIK JKBUTY SHEPTHSCHIH OPHEKTEHTIH, JKbUTYy TPAIUCHTIHIH KoMeTriMeH Oip

. . n
DJIEMEHT YLIIH (1)yHKIII/IOHaJ'I OpHET1 JKa3blIaJbl. Toibik KBULy DHEPIrusiChl J=3%J; q)OpMyIIaCI)IMeH
i=1

epHekreneni. TONBIK KbUTy SHEPrHSACHIH MUHUMH3ALMAIAY apKbUIBl TYHIiHII HYKTEEri KbUIyJbIH MOHIH
aHBIKTAY YIIIH anreOpajbIk TeHJeyJep jKYHeciH amaMbl3. AJIBIHFAaH MOHAEDP AapKbUIbI, JKbUIY YJIFAIObIH
ecebiHeH aneMeHTTIH y3apysl ecenteneni. XKymeicra T xbuty, Aly y3apy, R(xI) «co3puly» Kyuwi, o©

«CO3BLTY» KEpHEYiHIH e3apa Toyenaimiri kenripinreH. JKbutynslH ecy eceOiHEH aTanraH LIaMaaap.blH
MPOIIOPLHOHANIBI OCETIHAIrT KOPCETINreH.

Kinm ces3dep: *bulyaaH yiiFao, CEpIiMIUIIK MOIYJ, CBIPBIK, CBIPHIKTBIH Y3apybl, KbUIYKEpHEYIIK KYHi,
IIHCKPETTEY.

b. Kenxerymnos, f. Kynran, [I.b. Anmubues, A.Ill. KaxukernoBa

YucieHHOEe MOIeJTHPOBAHHE TEPMOMEXaAHUYECKUX
MPOIECCOB B KAPONMPOYHBIX CILIABAX

B crarse npuBeneHo YMCIEHHOE MOJEIHPOBAHUE TEPMUUECKUX MIPOIIECCOB B JKAPONPOUHBIX CIUIaBaX. ABTO-
paMu pa3paboTaH 3aKOH PaclpeelIeHHs] TEMIIEPaTypsl 110 JUTHHE (U3MYECKOTO Tella, B KadeCcTBEe KOTOPOro
paccMaTpHBalOT cTepKeHb U3 cruiaBa DM-617. Kpome Toro, uccienoBana 3aBUCHUMOCTb BETMYHMHBI yIUTHHE-
HMS CTEPIKHS OT 3aJaHHOM TeMmnepaTypbl. [ 3TOro cTep)eHb YCIOBHO IMOJCJIECH Ha HECKOJIBKO 3JIEMEHTOB,
a 3aTeM MCCJIelOBaHHE IIPOBOIMUTCS HAa OJHOM y4acTke. Jlyis onpeneneHus TeMrnepaTypHoi 3aBUCHMOCTH TO-
JIe paclpe/ieNieHHs TeMIIepaTyp aninpoOKCUMUPYETCS OJIHBIM IIOJIMHOMOM BTOPOH CTENEHH, a TAKKe BBOIATCS
anIpoKCUMAIMOHHbIE cIuTaiH-QyHKIMY. C ITOMOIIBIO IpafieHTa TeMIIePaTypPhl U OJHOTO JJIEMEHTA 3alld-
CBIBAaeTCsl BEIpaXKEHHE (hYHKIMOHANA, XapaKTepU3yIOIee MOJTHYIO TEIIOBYIO SHEPTHI0, CHavana mist (n-1)-ro

.

3NIEMEHTA, 3aTeM AJIA TMOcIeqHero n-ro 3nemeHTa. [lonHas TemnoBas 3Heprust BelpaxkeHa GopMynoi J=3 J;.
i=1

MUHUMHU3HPYS TIOJHYIO TEIUIOBYIO SHEPTHIO, ITOJIyYaeM CHUCTEMY alreOpanvecKHX YpaBHEHHUI Ui ompene-

JICHUS Y3JIOBBIX 3HaueHWU Temneparyp. IIpumeHss mosydeHHbIe 3HAYCHUS, BBIYUCISICTCS yAIMHEHHE dJIe-
MEHTa 3a CUeT TEIUIOBOTrO paciiupeHus. B paboTe mpuBeneHa 3aBUCHMOCTb MEXKAY TeMmeparypoi 7, yanu-

HenueM Alr , «pactsrupatonieit» cuioit R(k[') U «pacTsAruBaiOIiUM HanpspkeHuem» o. IlokasaHo, 4To ¢
MOBBIILICHUEM TEMIIEPATyphl IPONOPLUOHAIBHO YBEINYUBAIOTCA U HA3BaHHbIC BEJIMYKHBL.

Knrouegvie cnosa: TemioBoe pacmupeHue, MoayJb YHpyroctu, CTEpKEHb, YIIIMHCHUC, TEPMOHAIIPIAKEHHOC
COCTOSIHUE, TUCKPETU3ALINA.
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