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Dynamics of interaction of vortices in shear turbulent flows

The paper analyzes the results of a theoretical study of quasi-two-dimensional turbulence, two-dimensional
equations of motion of which contain additional terms. The regularities of the dynamic interaction of vortex
structures in shear turbulent flows of a viscous liquid are established. Based on the model of quasi-two-
dimensional turbulence, numerical values of the spatial scales of intermittency are determined as an alterna-
tion of large-scale and small-scale pulsations of dynamic characteristics. The experimentally observed alter-
nation of vortex structures and the idea of their self-organization form the basis of the assumption of the ex-
istence of a geometric parameter determined by the size of the vortex core and the distance between their cen-
ters. Therefore, the main attention is paid to the theoretical calculation of the minimum spatial scales of the
intermittency of vortex clusters. As a simplification, the vortex pairs are located in a reference frame, relative
to which the centers of the vortices are stationary. Thus, the kinematic effect of the transfer of one vortex into
the field of another is excluded from consideration. The symmetric and unsymmetric interactions of vortices,
taking into account the one-sided and opposite directions of their rotation, are considered as realizable cases.
A successful attempt is made to study the influence of the internal structure of vortex clusters on the numeri-
cal values of the minimum intermittency scales. The obtained results are satisfactorily confirmed by known
theoretical and experimental data. Consequently, they can be used in all practical applications, without excep-
tion, where the structure of turbulence is taken into account, as well as for improving and expanding existing
semi-empirical theories.

Keywords: turbulence, structures, vortex clusters, intermittency scales, self-organization, quasi-two-
dimensional turbulence model, vorticity, fractals.

Introduction

The results of numerous experiments [1, 2] give a clear picture of the vortex structures of shear turbu-
lent flows. The appeared large-scale vortices interact with each other and collapse, resulting in the formation
of a cellular structure of developed turbulence downstream. The same pattern can be seen with small scales,
which indicates the self-similarity of the process of splitting vortices.

The turbulent flow as a stochastic dynamic system has a special property that has high information con-
tent — intermittency, which reflects as an alternation of small-scale pulsations of dynamic characteristics with
bursts of large-scale pulsations [3]. The experimentally observed intermittency in turbulent environment is
due to the passage through fixed points of spatially separated vortex formations in various forms and phases
of their evolution. Therefore it is possible to introduce a quantitative dynamic characteristic — the degree of
intermittency [4]

e=1dy 0<1/e<],
where [ — distance between the centers of vortices, dy,=2r, — diameter of the vortex core. The idea of the self-
organizing nature of intermittent vortex structures points to the possible universality of the internal parameter
ce, rather than the external geometric scales of the flow. Knowing the realizable values of e allows to specify
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a certain type of turbulent motion. The formation of vortex clusters-paired vortices with the same and oppo-
site circulations is the most common pattern of shear (gradient) flows. The pairing of vortices with the same
rotations is mainly realized in the mixing layer at the free boundary of the jets, and with opposite circulations
in the wake of the body in the boundary layer on the axis of the jets in the region of the establishment of the
turbulent flow. In the developed turbulent flow, where the role of boundary conditions weakens, both types
of vortex clusters are realized [2].

The study of interaction of vortices is one of the central tasks of hydrodynamics, which has both direct
application, for example, to the description of geophysical phenomena [5, 6] and general physical
significance associated with the knowledge of the regularities of the formation of the energy spectrum of
turbulence [7]. A number of publications are devoted to the study of the structure of turbulence and its
accounting in various practical applications [4, 8—12]. In contrast to the known studies, this article examines
the possibility of a theoretical description of the interaction of vortices of a viscous liquid taking into account
the difference in the directions of rotation.

Problem and research method

If we choose the spatial scales so that we can neglect the size of the vortex formations considering them
as points, then their movement as a whole is always three-dimensional, turbulence is a chaotic phenomenon
in the usual sense of the word. But within the scale of the vortex formations (the physical scale of the self-
organization structures) on the basis of main (averaged) flow it is always possible to emphasize a quasi-two-
dimensional motion associated with an increase in the rotation of the liquid along the cross-section of the
vortex tubes. The predominance of rotation in one direction is due to the stretching of the vortex tubes before
they break as a consequence to the tendency to move away from each other (weakening of the correlations of
dynamic characteristics) of fixed liquid particles, which is one of the pivotal mechanisms for generating tur-
bulence [3].

Quasi-two-dimensionality of motion means the correlation with rotation on the plane with the
pulsational motion caused by a non-stationary perturbation of the surface of any section. In the self-
organization of vortex structures, which is a balanced inverse process to their decay, the separation of one
direction of rotation also occurs. Thus, the structural properties of turbulence can be described in a quasi-
two-dimensional approximation.

Figure 1 shows a scheme of a quasi-two-dimensional vortex packet with a free surface having a core

with radius 7, and angular velocity &, . The quasi-two-dimensionality is reflected by the possibility of per-

turbation of the vortex surface level 7(x,y,#) and the negligible smallness of the change in the average motion
characteristics over the equilibrium thickness /4, .

Figure 1. Scheme of a quasi-two-dimensional vortex packet

6 denots the angle between the direction of the angular velocity of the vortex core QO and the direction

Q(r) — the angular velocity of the particle located at a distance r. The angular velocity of the vortex core QO
can be estimated through the condition of stationary turbulence generation by an external flow with a veloci-
ty Up in the form of Q ~ Uo/r0 ~ Ug/v.
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In order to find out the dynamic regularities of a quasi-two-dimensional vortex packet in a submerged
environment it is necessary to determine the velocity fields © and pressure p formed by the initial circula-
tion

T, =27Q,7
0 0°0
either on the planes (x, y) in the Cartesian or (r, (0) in the polar coordinate system.

The vortex motion is characterized by the vorticity rofO at each point. Some of its average value (for
example, in time 7 and in angle ¢ ) < rotd > =2Q(r) is supported by the stationary generation of turbulence
by external influences: the main flow, the inhomogeneity of dynamic, temperature fields and so forth. The
correlation of Q(r) to the circulation is determined by Thomson's theorem:

[ <rott>dF,=2 [ Q(r)dFy =T,
0 FO
where F, is the contractible simply connected surface of the vortex as a whole with respect to the average

dynamic characteristics.

In accordance with the quasi-two-dimensional feature of the task we proceed from the equations of the
theory of "shallow water" [13]. Taking into account the viscosity, based on the above the equation of motion
can be written in the form [14, 15]:

%+(UV)G = @3V -2[ Q5 ]+ vWi5 + %Vdivf). (1)

The continuity equation is obtained from the condition of constancy of the mass of a liquid with a con-
stant density passing through the fractal (depending on 7(x, y, t)) surface of the vortex

F(m)=Fy+F'=Fy+ 1M, )

where 7, is some effective size of the vortex. The area of the fractal surface (n) can be expressed in

terms of Fo,n and the fractal dimension of the turbulent vortex. Expression (2) should be considered as a

decomposition of F(77) over a small argument, and Tose can be expressed in through i due to the possibility
of renormalizing 1y by the condition
V(7)) =V =Qry =1y 277,
Fractality, i.e., the perturbation of the vortex surface, corresponds to the turbulent mixing of the incom-
pressible fluid mass. Then finally the continuity equation takes the form

o Lfom o
dive = ; (Gt +(UV)T]). 3)

0

The equations of motion (1) and continuity (3) allow us to determine the velocity and pressure distribu-
tions associated with 7(x,y ¢) in a turbulent vortex. The equation in the form (1) in a differentially rotating
coordinate system with an angular velocity €)(7) is valid only if there is no dependence of Q2 on the other

variables, i.e., it corresponds to the simplest implementation of the Taylor hypothesis [3] about the conserva-
tiveness of the vortex, or, more generally, to the position of synergetics about the possibility of the existence
of a stationary, but nonequilibrium ("standard") state [16].

Calculations and discussion

Symmetric dynamic interaction of vortices. Figure 2 shows graphical images of both types of vortex
clusters. The characteristic spatial scales are indicated: Ty~ the radius of the core (the region of quasi-solid
rotation) of the vortex, - the size of the dissipative region of motion, where there is no oncoming direc-
tional motion due to the inhibitory effect of viscosity (with the kinematic coefficient v), ll,l2 — the mini-

mum distances between the centers of interacting vortices, respectively, with one-sided and opposite rota-
tions, l{,lé — the size of the localization areas of vortex clusters. Let us consider vortex clusters in a frame of

reference with respect to which the centers of the vortices are stationary. In this formulation of the task the
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dynamic interaction of vortices is described, excluding the kinematic effect of the transfer of one vortex into
the field of another. The designations of the main parameters of the task are shown in Figure 3. At the points
(=x1,%)), (=x5,%,) on the x — axis the centers of the nuclei of vortices with radius T rotating with an an-
gular velocity of Q 0 are located. The values x;.x, are the result of the process of interaction of vortices

(self-organization) and are determined from the dynamics of the formation of vortex clusters.

Figure 2. Graphical representation of vortex clusters.
a) one-sided, b) opposite rotation of the elements of vortex clusters

Expressing the distribution of the average vorticity

ZQ(r)=<r0tD(r, ¢)>, 4
where o is the velocity vector, 7, @ are the polar coordinates corresponding to the coherent state of the vor-
tex pairs, under certain physical conditions can be searched for throughout the values x;.x, , the fluid motion

region.

Figure 3. Calculated scheme of interaction of vortices.
a) one-sided, b) opposite rotation of the vortices

Without taking into account the internal structure of the vortices, the distribution of the average
vorticity is expressed in terms of QO using Thomson's theorem:

Q(r)=9Q, r02 s 5)

The resulting average vorticity at the point O of the system of two interacting vortices (a scalar value) is de-
termined by the following formulas

1 1

2 .
Qj(r):QOFO —2i—2 , j=12,..., 6)

noh
where Q,Q, and the signs “+7, “-” correspond to one-sided (j =1) and opposite ( j = 2) rotations of the

elements of the vortex pairs. Using the cosine theorem, we define r j from Fig. 3interms of r,¢ , x . :

J
2_.2,.2 2_.2,.2
nExS A +2xjrcosgo, By =Xt 2xjrcos¢
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Substitute the obtained values in (5) and (6):

Q (r,go):ZQorOZ (r2 +x12 )/fl (r.o), (7)
Q,(n ¢)=4Qor02x2rcos¢)/f2 (), (8)
2
where fj (r,¢):(r2 +xj2) —4xj2r2 cos’ g, j=1,2.

Characteristics of homogeneous turbulence are considered on the basis of the model of a quasi-two-
dimensional vortex packet [14, 17, 18]. It follows that the simplest vortex clusters formed from elements of
homogeneous, isotropic turbulence should be described by the regularity (4) in the regions of motion, where
their internal structure can be ignored. This statement is taken as a physical condition that determines the
minimum spatial scale of localization of vortex clusters, beyond which they can be considered point struc-
tures.

Thus, two conditions are formulated for determining the desired scales of vortex clusters Xy, Xy the

implementation of Thomson's theorem for the average vorticity outside this scale and the implementation of
an extreme coherent state with minimal scales Xy, X, . These accepted conditions will be taken into account

when solving the problem under consideration to simplify the conservation law (instead of the equations of
motion), the form of which will be set below.

The energy of the bound state of the vortices is less than the additive sum of the energies of the individ-
ual vortices. Therefore, in the task under consideration energy is not an invariant: when the vortices are clus-
tered, energy is dissipated — the energy is transferred to a smaller-scale motion. The momentum of the vortex
motion is not true, but a quasi-pulse, which is also not preserved during the interaction of vortices. The uni-
versal mechanism for maintaining turbulence is the presence of an energy flow caused by the influx of ener-
gy from outside and its dissipation in the medium. Therefore, to establish the most general patterns of inter-
action of vortices it is necessary to link the main characteristics of the problem with the value of the energy
flow.

In the presence of vortices of different signs the invariant characteristic is the square of the vorticity

|r0t5 |2 , or, enstrophy. The following connection of enstrophy with the energy dissipation of turbulent vorti-
ces is generally accepted [3]:
&=———t=2v ] KE(k)dk =v|roti]",
dt 0

where E (l; ) is the spectral energy density of the turbulence. In the question under consideration about the

energy distribution with intermittency on the scale 1/k ~r, Fin = X% > obviously, the invariant value will
be:
~2
rev |r0tu| =const. )
Or by using angle velocity:
r-Q? (r)=const. (10)

From the conservation law (10) we determine the desired interleavability scales, using the conditions
formulated above for the minimality of their values and the fulfillment of Thomson's theorem outside of the-
se scales. Equating the derivative of expression (10) with respect to » for r = X}, X, to zero we have:

(@ (m)+2rQ) () =0 (@, (r)+2r2,) (1))

In order to exclude the derivatives of Q (r) we write the expressions (11) in the form:

do(r)  ar dQ,(r)  dr

Q, (r) _Er:xl ’ Q, (r) - 2r

= 0. (11)

F=Xx,
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from which it follows

G

__1 _
Ql(xl)_\/x—’ Qz(xz)_\/x—’
1 2
where C,,C, — constant integrations.
According to fig. 3, the desired scales Xy, X, are determined for the direction ¢ =0, and in accordance

with formulas (7), (8) we have

— 1/2 _ /2
C=2Q,1y", C,=4Q,r/", (12)
2 X
=2 =2 (=2 =1/2 _ |
+1) —4Xx" - +1 =0, =—, 13
(xl ) & (xl )xl x| o (13)
2 b
()_622 +1) —4)?22_)723/2=0; X, :r_z’ (14)
0

where the indexes 1, 2 refer respectively to vortex clusters with the same and opposite rotations of their ele-
ments, the C1 , C2 constants are determined for the case » = 1y - Numerical solutions of equations (13), (14)

give the desired results in the form of
x1=1.86-r0, x2=1.54-r0. (15)

The results (15) can be obtained directly from the equation of motion of a quasi-two-dimensional vortex of a
viscous liquid, taking into account the inhomogeneity of the turbulent motion [18].

The existence of a limiting degree of intermittency was shown earlier [4]. The minimum value of the
degree of intermittency is determined from the recurrent formula for the energy of vortex structures:

7=Dy /2L, =3=1.73, (16)
where D, is the distance between the centers of the two vortices, L, is the root-mean-square radius of the

vortex after an infinite repetition of the process of merging the vortices.

Taking into the account that given work is considering the statistical theory of structureless vortices, a
satisfactory coincidence of the results (16) with (15), the average value of which is 1.70, can be noted. The
proposed model of the interaction of vortices allows us to analyze the known visual patterns of flows [2], one
of which is shown in figure 4 as an example.

Figure 4. Vortices behind the rotating screw

Taking into account the quality of the photo, possible distortions, and the absence of some experimental
parameters, the obtained values x; ~(1.9+0.1)7 and x, ~ (1.6 £0.1)7, confirm the results of (15).

Asymmetric interaction of vortices. Let us consider a system of two vortices (fig. 5), when they may dif-
fer in their evolution in size (radii of the nuclei ry,) or angular velocities €. Since the comparison of theoret-
ical results with experimental data is conveniently (possibly) carried out as the ratio of the radii of the vortex
cores, the asymmetry of the system of two vortices is represented as the ratio of circulations [18]. This is all
the more justified for the case of homogeneous turbulence or free flows (without streamlined solid surfaces),
when due to pressure equalization the angular velocities are equal to (2, = Q, and the change in the size of
the vortices is equivalent to a change in the circulations. So, if we enter the unbalance parameter in the form
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Q12
a=—"0, (17)
Q01791
then from the expressions (6) we obtain, respectively, for a system of equally rotating vortices (sign “+”’) and

oppositely rotating vortices (sign “—)

a 1
Qj(r)szrozl St (18)
Hhon

The amount of « lies within 0 < & <1; it cannot be less than zero for physical reasons, & > 1 would only
mean a change in the numbering of the vortices. Then, using the cosine theorem for the transformation (18)
and the condition for the invariance of the enstrophy moment in the dynamic interaction of vortices (9), we
obtain two equations similar to (13) and (14):

o h 5
v >« +
o1 ﬁ; A Fo1
Y r 4
I3

M
v

I
a)

Figure 5. Graphical representation of the asymmetric interaction of vortices.
a) one-sided, b) opposite rotation of the elements of vortex clusters

G 1)1+ @)-25 (1-a))=(% 1) (19)

X. 2
Y2 (he =2 )
T{2x2(l+a)—(x2 +1)(1—a)}:(x2 -1)7, (20)
where « is defined by the formula (17). The numerical solutions (19), (20) are presented in the form of

R _ 1/2 _ 1/2
graphs in Fig.6. The constants Cz’ analogous to (12) are equal to €} =2€,707".C, =4, 707"

2,0
1.8
1.6
1.4

12

1,0

0,8 : . . a

> T

0 0.2 0.4 0.6 0.8 1.0

Figure 6. Change in the minimum scale of intermittency in the case of asymmetric
interaction of vortices: 1 — one-sided, 2 — opposite rotation of the vortices.

As can be seen from the figure, the solutions of equations (19), (20) at =1 coincide with the solutions
of (15), and at = 0, as can be expected, )71 = )_62 =1.0. The value = 0 corresponds either to the absence
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of the second vortex, or to the condition r and x; must coincide with the boundary of the core:

0i

 >>T

o ?
X=Xy =1

Interaction of vortices with the internal structure. The fixed values (15) of the minimum spatial scales
of intermittency, as well as their dependence on the asymmetry parameter (Fig. 6), are obtained without tak-
ing into account the structure for a homogeneous-isotropic developed turbulence. To account for the struc-
ture of vortex clusters it is necessary to express the average vorticity in terms of the current function y,
which satisfies the continuity equation (3) and expresses the dynamic characteristics of the vortex. Because
of that the expression (4) will be written in the following form:

1
Q(r)=—=Ay,
(r) i

From (1) and (3), the amount of Ay will be determined by the following expression [18]:

[y sin(\|Ayin r /ro — Aycos(|AyIn v /ro)
2 b
e
J

Al//(l”j)=l//0j J=12
where . =Q w2
0/ 0°0;

The resulting average vorticity of the system of two interacting vortices (formula (6)) in this case is
written as:

1
Q; () =-5[Ap(y) £ Ay (). @1
Expressing, as before T through r, @, x j (fig. 3), after simple transformations from (21) we get the

following expression

Q. |4, — 4B, AA.— . |1, B"
Q.:—O 0“7 0 ji 0" (U ’ 22)
L (fj‘l)z (’71“)2

where Aj:cos[\/%ln(fj—l)}, Bj:sin[\/%ln(fj—l)},
Aj’.=c0s[\/%ln(fj+l)}, B}=sin[%]n(fj+l)}, )TJ.:%.

In the output (22) it is taken into account that the desired scales x ; are determined for the direction ¢ = 0 at

r =r,. Next, we use the conservation law for this task in the form of the invariance of the enstrophy moment
(see formula (9)). For the common solution of (9) and (22) we apply the condition of extremality of the in-
termittency scales. Equating to zero the derivative of expression (9) with respect to » at r = x, we have:

[Qj (r) + 2rQ'j (r)}

=0,
r=x )

from which it follows

==l (23)
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where CI,C2 are the constant integrations. Equating the right-hand sides (22) and (23), we obtain the

following equations with respect to x J

ﬁ{(% +1)] (A4 =% B, )+ (% 1)’ (404 - /1081’)}:4(_12 —1)2, (24)
\/g[(% i 1)2 (o8s =2 B, )= (%, - 1)2 (oA =3B, )} =8(%3 - 1)2’ (25)

- 12 _ 1/2
¢, =20y1%, ¢, =407,

where the indexes 1, 2 refer, respectively, to vortex clusters with one-sided and opposite rotations of their
elements. The results of the numerical solution of equations (24) and (25) are shown in figure 7.

2.0
1.9 EESEEh 1\
1.8

b2

1.6

1.5
1.4

-

AQ

0.5 1.0 15 20 25 3.0 35 40

Figure 7. Minimum spatial scales of intermittency of vortex clusters with the internal
structure of their elements: 1 — one-way, 2 — opposite rotation of the elements. )Tj = xj / ro

As can be seen from the figure, at A, =2, corresponding to the developed turbulence [18], the values of X j

approach their values for the structureless interaction X; =1.86 and X, =1.54.

Conclusion

Based on the quasi-two-dimensional turbulence model, using fairly simple methods, the numerical val-
ues of the minimum intermittency scales are calculated. It is shown that the intermittency, in this case, the
alternation in space of large-scale pulsations of the dynamic characteristics of a turbulent medium with
small-scale one, is explained and described by the result of the interaction of vortices, the structure of the
resulting vortex clusters with one-sided and opposite rotations of their elements. The results obtained are
confirmed by well-known thermoanemometric measurements, experiments on flow visualization, and the
statistical theory of structureless vortices.

The established dynamic regularities of intermittency can be useful for improving the existing semi-
empirical theories of turbulence by reducing the number of empirical constants, clarifying and expanding the
types of hydrodynamic tasks. The agreement with the experiment of the conclusions of the given dynamic
approach gives grounds to use analytical expressions of the structural elements of turbulence to describe the
correlation and spectral patterns of inhomogeneous turbulence.
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A XK. Typmyxamb6etos, C.b. Oterenona, K.A. AiittmanoBa

TypOyJieHTTi aFbicTAPAAFbI KYHBIHABIK KYPbLIBIMIAAPIbIH
AUHAMHMKAJIBIK 03apa dpeKeTTepi

Makanaza KypaMblHIa KOCHIMINA MyInenepi Oap eki emimeMai KO3Falbic TEHJEYJepiMeH ©OpHEKTEeNeTiH
KBa3HEKioNmeMal TypOyIeHTTUTIKTI TEOPHUSIIBIK 9MiCTEpMEH 3epTTEYy/iH HOTHXKeNIepi capantaiasl. TYTKbIp
CYHMBIKTBIKTBIH BIFBICY TYpPOYJIEHTTI aFbICBIHIAFbl KYHBIHIBIK KYPbUIBIMIAPIbIH AWHAMUKAJIBIK ©3apa
OpeKeTIiHIH 3aHIbUIBIKTaphl TY)XbIpbIMAanraH. KBasuekienuemai TypOYJIEHTTUIIK Mojelni Heri3iHae e3apa
IMACy/bIH KCHICTIKTIK MacIITa0TapbIHbIH CaH/IBIK MOHIEP] JUHAMHUKAJBIK CHIIATTaMalapAblH YJIKSH- KoHEe
KiIIKeHeMAacITa0Thl JIYMUJIASPiHIH alMa-Ke3eK aybICyjlapbl TYPIHAE aHbIKTanFaH. Toxipube Ky3iHzae
GaKpUIAHATHIH KYHBIHIBIK KYPBUIBIMAAP/IBIH AJIMa-Ke3€K aybICybl MEH OJIapAbIH ©3iHAIK KaybIMIACybl TypaJibl
KO3KapacThIH KYHBIHAAP SAPOCHIHBIH OJILIEMePi MCH OJapiblH apachIHAAFbl KAlIBIKTHIKICH aHBIKTAIATBIH
KelOip TreoMeTpHsUIBIK IapaMeTpAiH O0ap Ooiybl Typambl OOJDKaMHBIH HETi3iH KypaWThIHBI Oenrii.
CoHABIKTaH HETI3ri KOHUT KYHBIHIBIK KJIACTepJIepAiH Ke3eK ayBICYBIHBIH Killi KEHICTIKTIK MacmTaOblH
TEOPUSUIBIK 9JicIieH ecenteyre Oeminren. EcenTeyni bIKmamaay yIiIiH KOC KyHbIHAAp, ONapIblH LEHTpIepi
CaJIBICTBIPMAJIBl TYPAE KO3FAIMAMTBIH, CaHAK JKyHeciHae opHamacTelpbliraH. OckblraH OailaHbICTBI Oip
KYWBIHIBI eKIHIN KYHABIHHBIH ©piciHe amapraH Ke3Ze MYMKiH OOJaThlH KHHEMAaTHKAIBIK 3S(derT
eckepinmeiini. Hakrel MyMkiH OonaThlH jkaFmaitnap peTiHae KyWblHIapAblH Oip OaFbITTarbl JKOHE Kapchl
OarbITTarbl aifHaJTylMapblH €CKEpPe OTBIPBIN, OJAP/bIH CHMMETPHSIBI JKOHE CHMMETPHSUIBI eMec e3apa
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opekerTepi KapacTelpbutFaH. Kesek anMacyzblH Killli MacIiTa0TapblHBIH CaHIBIK MOHJAEpPiHE KYHBIHABIK
KJIacTepJepiH iIIKi KYPbUIBIMBIHBIH SCepi aHbIKTaIFaH. AJIBIHFAH HOTIDKENep Oenriai ToxipuOemik jxoHe
TEOPHSUIBIK ICPEKTEPMEH CaJIbICTBIPBUIBII, OJAPABIH COMKecTiri ponenaeHreH. OcblraHn GalJIaHBICTBI 3epTTEY
HOTIDKENepl  OpTaHBIH  TypOYJNCHTTINIK KYpBUIBIMAAPHl  €CKepuUIeTiH OapiblK TEXHHUKANBIK JKOHE
TEXHOJIOTHSUIBIK ~ KOJIIAHBICTApAA JKY3€re AachIpPbUIbII, OCNrili KapThUIAaHdIMIMPUKAIBIK TEOPHUSIIAP/IbI
KEHEUTIII, XKeTUIAIpyre KOJIIaHbLTYbl MYMKIH.

Kinm coe30ep: TypOyneHTTIIIK, KypbUIBIMIAp, KYWBIHIBIK KJIAacTepIiep, Ke3eK aybICY/bIH MACIITA0bl, ©31HIIK
KaybIMJIacy, KBa3ueKienemMai TypOyIeHTTiTiK MoJes, KYHbIHaTy, (ppaKTaniap.

A K. Typmyxamberos, C.b. Oterenona, K.A. AiittmanoBa

JIluHaMHKa B3aMMO/AelCTBUSI BUXPeil B CIBUTOBBIX TYPOYJEHTHBIX T€YeHUAX

B crarse npoaHanu3upoBaHBl Pe3yIbTaThl TEOPETUUECKOTO HMCCIIECJOBAHUS KBa3HABYMEpPHOI TypOyJIeHTHO-
CTH, AByMEpHbIE YPaBHEHHUS JIBHKEHHSI KOTOPBIX COJEPIKAT JOIOIHHTENbHBIC CllaraeMble. Y CTaHOBJIEHBI 3a-
KOHOMEPHOCTH AWHAMHYECKOTO B3aUMOJICHCTBUS BUXPEBEIX CTPYKTYP B CABUTOBBHIX TYpOYJICHTHBIX TEUECHH-
AX BA3KOM kuakocTH. Ha ocHOBe Mozenu KBa3uaByMEpPHOH TypOyJIEHTHOCTH OIPE/eNICHbl YNCIEHHbIE 3Ha-
YEHUS NPOCTPAHCTBEHHBIX MAaclITa0OB IIEPEMENKACMOCTH KAaK YEPEJOBaHHE KPYITHO- M MEJIKOMAaCIITaOHBIX
HyJbcalii JUHAMMYECKHX XapaKTEPHCTUK. ODKCHEPUMEHTAJIbHO HaOII0aeMOe 4YepeOBAHME BHXPEBBIX
CTPYKTYp U uzest 00 X caMOOPraHM3aIuy COCTABIISIOT OCHOBY MPEANOJIONKEHHS O CYIECTBOBAHUU I'€OMET-
PHUECKOTO MapaMeTpa, ONpPEnesieMOro pa3MepaMu spa BUXpEH M pacCTOSHUEM MeXIy MX IeHTpamu. [lo-
9TOMY OCHOBHOE BHHUMAHHE yJEJICHO TEOPETHIECKOMY pacdeTy MUHHMMAJBHBIX IPOCTPAHCTBEHHBIX MACIITA-
00B IepeMex)aeMOCTH BUXPEBBIX KIIACTEPOB. B kauecTBe ympoleHns: BUXpEBbIe Maphl PACIIOI0KEHEI B CHC-
TeMe OTCYeTa, OTHOCHTEIBHO KOTOPOH IEHTPHI BUXpEil HEMOABIDKHEL. TeM caMbIM M3 PpacCMOTPEHHS UCKIIIO-
YaeTcs KMHeMaTHieckui s ¢ekT nepeHoca OfHOro BUXpS B IOJIE APYroro. B kauecTBe KOHKPETHO peanu-
3yeMBIX CIy4aeB PaCCMOTPEHbl CHMMETPHYHOE U HECUMMETPHYIHOE B3aUMOAEHCTBHS BUXPEH C yIETOM OJHO-
CTOPOHHEr0 U MPOTHBOINOJIOXHOTO HAMpaBIEHUH MX BpallleHUs. ABTOpaMH MPEANpPHUHSTA MONbITKA U3yYUTh
BIIMSIHUE BHYTPEHHEH CTPYKTYphl BUXPEBBIX KJIaCTEPOB HA YMCIIEHHbIE 3HAUEHNS] MUHUMAIIBHBIX MacIITaboB
nepemexkaeMocTu. [lomydeHHble pe3ynabTaThl IMOATBEPAKIAIOTCS U3BECTHBIMU TEOPETUYECKUMM U IKCIIEPH-
MCHTAJIbHBIMH JaHHBIMU. CIIeJOBaTeIbHO, OHU MOTYT OBITh HCIIOJIB30BAHEI BO BCEX, 0€3 HCKITIOYEHHS, IIpaK-
THUYECKUX NPUIOKEHUSX, T UMEET MECTO YUeT CTPYKTYpHI TypOYJIEHTHOCTH, a TaKkKe AJISI COBEPIICHCTBO-
BaHMS M PACIIMPEHHS CYIIECTBYIONINX TOIyIMITHPHIECKIX TEOPUH.

Knioueswie cnosa: TypOyneHTHOCTb, CTPYKTYPBI, BUXPEBbIE KIaCTEPhl, MACIITa0bl IEPEMENKAEMOCTH, CAMOOP-
raHU3aLus, MOJEIb KBa3UAByMEPHOI TypOYJICHTHOCTH, 3aBUXPEHHOCTD, (DPAKTAIIBI.
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