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Study of polyamorphic transformations in the cryomatrix  
of nitrogen in cryovacuum condensates of water 

One of the important tasks of modern physics of condensed matter is to establish an unambiguous connection 
between the conditions of formation and the properties of the resulting solid phase. Its solution will contribute 
to major breakthroughs in the creation of materials with desired properties. As any scientific and technologi-
cal problem, this approach is associated with the need to address a wide range of fundamental issues. The ba-
sis for success in this direction is the implementation of a complex not only with model tests, when the inves-
tigated substance is important from a practical point of view, but in itself has interesting physical properties; 
such objects can be fully attributed to chemical properties. Hydrogen-bonded substances, in which, in addi-
tion to van der Waals forces, interactions due to the presence of an intermolecular hydrogen bond play an im-
portant role. The obtained method of cryomatrix isolation facilitates assuming that in the process 
of cryocondensation of pure components of water and ethanol at an intermediate stage in the adsorbed layer, 
there is a process of formation of clusters with a short-range order similar to the liquid state of water or etha-
nol. 
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Introduction 

The structure of water crystals is often determined by the presence of hydrogen bonds. This is due to the 
fact that the water molecule is a symmetric proton donor and acceptor. This distinguishes the water molecule 
from isoelectronic homologues such as NH3 and HF. The NH3 molecule has three protons and one pair, and 
the HF molecule has one proton and three single pairs. Thus, only in the system of H2O molecules, hydrogen 
bonds (H-bonds) completely determine the geometry of H2O crystals and the properties of condensed water. 
This is determined by the strong orientation of the H-bond, which means that if a hydrogen atom is between 
two oxygen atoms, then the spatial organization of such a system cannot be arbitrary. The formation of one 
hydrogen bond leads to a decrease in the activation barrier for the formation of the next H-bond, and so on. 
Since this cooperative property of hydrogen bonds is due to the interaction of two with hydrogen, one mole-
cule is acidic and the other is alkaline. In this regard, it seems necessary to pay more attention to the structure 
of the water molecule [1, 2]. 

The structure of the water molecule. H2O molecule consists of two hydrogen atoms and one oxy-
gen atom. When studying the optical spectra of water, it was found that in the absence of motion (without 
oscillations and rotations), hydrogen and oxygen ions should be located on the vertices of a right triangle 
with an angle of 104.5. The nuclei of a water molecule are surrounded by an electron cloud with a radius of 
0.138 nm, consisting of positive electrons that are unevenly distributed within the sphere. Two of them are in 
the first orbit, in the immediate vicinity of the oxygen nucleus and do not play a significant role in the for-
mation of the bond between oxygen and hydrogen, the remaining eight electrons are paired in four eccentric 
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orbits in the tetrahedral direction from the oxygen nucleus. The charge of the eight electrons completely 
compensates for the charge of the oxygen nucleus, but the electrons rotating in two orbitals without protons 
form two negative centers, that is, the single electrons form two arms from the oxygen nucleus to the vertices 
of the imaginary tetrahedron, the H2O molecule. The interval between H+ and O2 ions in the unexcited state 

is 0.96 


. Due to this structure, the water molecule is a dipole, because the density of electrons in the region  
of O2 — ions is much higher than in the region of H+ ions. One can imagine two small bulging water mole-
cules in the region of the protons, as illustrated in Figure 1. 

 

a)  
 
 

b)  

Figure 1. Geometric diagram of the monomer H2O (a), plane model (b) 

Dynamics of water molecules. As in a rigid structure, the nuclei of molecules in a crystal lattice are in 
a state of continuous oscillation at 0 K. An important feature of these oscillations is that they can be charac-
terized by a limited number of fundamental oscillations, called normal modes. This is an oscillation in which 
all the nuclei oscillate at the same frequency and in the same phase. The water molecule has three normal 
modes ν1, ν2, ν3. Any possible vibration of this molecule can be described as a superposition of these three 
modes. 

The oscillations that move the H-nuclei in the direction of the OH bond are called the OH bond oscilla-
tions as shown in Figure 2. These oscillations occur at frequencies ν1 and ν3. The oscillations in which the 
H nuclei move in a direction almost perpendicular to the O–H bonds (ν2 mode), are called the defor-
mation vibrations of the H–O–H bonds or the bending oscillations of the H–O–H bonds. In fact, in the ν1 

mode, the H–O–H bond has a small amount of bending, while in the ν2 mode, a small amount of O–H elon-
gation corresponds. ν3 is called asymmetric tensile vibration or asymmetric tensile vibration or asymmetric 
tensile vibration, and is different from ν1 symmetric tensile vibration. These frequencies are derived from 
Raman and infrared spectra [3]. 

The transition of the water molecule from the basic state of oscillation, described by the mode 2, to the 

excitation corresponds to the infrared absorption band 1595 cm-1. During this transition 2 describing the 
mode 2 quantum number varies from 0 to 1, and 1 and 3 describe the modes, 1 and 3 are zero quantum 
numbers. Similarly, the transition of a water molecule from the basic state of oscillation to the state in which 
only the first normal mode is moving (the state in which the quantum numbers 1 =1, 2 =0, and 3 =0) corre-
sponds to an absorption band of 3657 cm-1. The third normal mode corresponds to an absorption band with a 
maximum frequency of 3756 cm-1. The given parameters correspond to an empty water molecule. During the 
transition to the condensed state, there are changes in the parameters of intermolecular interactions, as well 
as a significant expansion of the absorption bands of fundamental frequencies as a result of the formation of 
hydrogen bonds and their transition to lower vibration frequencies. This leads, in particular, to the superposi-
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1 — test gas “1”, 2 — test gas “2”, 3 — valves, 4 — baratrons, 5, 6, 7, 8 — taps. 

Figure 5. Schematic of the cryodensor vapor extraction system 

The temperature of the substrate is measured in thermocouples (Au+0.07 % Fe) — Cu, with an accura-
cy of at least 0.5 degrees in the lower temperature range; IR spectrometer frequency range 400 cm-14200 
cm-1 (ICS-29); film thickness — 30 microns (two-beam laser interferometer) [11–13]. 

As an example, interferons obtained during growth in the substrate at a temperature of ethanol conden-
sate in the substance T = 16 K and a gas phase pressure P=810–4 Pa (Figure 6). 

 

 

Figure 6. Typical interferograms of condensate film growth 

Data registration was performed automatically every 0.5 seconds. The main sources of measurement er-
ror are the error in determining the time (interference period) and the angle of incidence. During the align-
ment of the installation, the angle of incidence of the interferometer was set with an error not exceeding 
0.5 %. The error in determining the growth time of the film does not exceed 4.5 % [14–15]. 
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Figure 7. Reflection spectra of water in a nitrogen matrix 

In the Fig. 7 the spectra of reflections of the samples in the temperature range of the matrix 16–24 K are 
given. These are presented in the frequency range of deformation oscillations of water (left drawing), hydro-
gen-bound states (central drawing) and quasi-free valence symmetric and asymmetric oscillations (right 
drawing). Similar data are provided in Fig. 8 for the temperature range 26–32 K. 

As can be seen from the presented data, the reflection spectra have features specific to matrix-isolated 
states of water. In the frequency range of deformation curves (left pattern) there are two strips of absorption 
with a maximum of ν = 1584 cm — 1 and ν = 1604 cm — 1. The first band refers to the deformation oscilla-
tions of H2O monomers in solid nitrogen. The band with a maximum of ν = 1604 cm — 1 can be related to 
the amount of water polymers in the matrix. In this case, of course, with the increase in temperature of the 
substrate, the monotonous decrease in the amplitude of the oscillations of the monomers is accompanied by 
the growth rate of absorption of the polymer. 

 

 

Figure 8. Reflection spectra of water in a nitrogen matrix 

The matrix temperature range (Figure 8) is from 26 K to 32 K in the frequency ranges of bending vibra-
tions (left figure), hydrogen-bonded states (central figure), and quasi-free stretching symmetric and asym-
metric vibrations (right figure). 
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The central fragments of Fig. 7 and 8 represent the frequency range of hydrogen-bonded O–H bonds. 
The spectra given in this range and their agreement with these allow to make assumptions about the availa-
bility of polyaggregates of different scales. Thus, the minimum at a frequency of 3234 cm — 1 corresponds 
to the square meters, the absorption at a frequency of 3330 cm — 1 corresponds to the polymer, and the peak 
at a frequency of 3526 cm — 1 can relate to the dimers [16]. We do not plan to analyze in detail the cluster 
composition of the model in this work. It is important to note that the increase in the temperature of the ma-
trix at low temperatures leads to the transformation of spectra in this frequency range. 

 

 

Figure 9. Reflection spectra of an isotopic mixture of water (3 %)  
in a nitrogen cryomatrix at different substrate temperatures 

Figure 9 demonstrates data in the frequency range of bending and stretching vibrations of the O–H and 
O–D bonds. As can be seen from the figure, the vibrational spectra contain features characteristic of matrix-
isolated systems, in which aggregates of water and heavy water of various sizes are present. A gradual in-
crease in the temperature of the sample leads to a transformation of the spectrum, but the degree of these 
transformations is different for different types of vibrations of molecules of the isotopic mixture of water. 

Conclusions 

In accordance with our data, it can be argued that the temperature of the transition from glassy amor-
phous ice to the state of a superviscous liquid is Tg = 137 K ± 2 degrees. A further increase in temperature 
leads to a stepwise transformation in the layer. This may be associated with competing crystallization pro-
cesses through the growth of cubic and hexagonal nuclei, as well as direct crystallization 
of liquid superviscous water formed at Tg and existing together with the crystalline phase up to temperatures 
of about 200 K. 

Our studies revealed the anomalous behavior of the samples at temperatures preceding sublimation. 
This is the abrupt behavior of the heating curve, which is accompanied by an extremum pressure in the 
chamber. In our opinion, these experimental data confirm the point of view expressed in the works [17]. The 
point is that a multicomponent system consisting of amorphous and crystalline components at a fixed tem-
perature should have different equilibrium pressures of the gas phase corresponding to the partial activation 
energies of sublimation. Because if the activation energy of the amorphous form of ice is greater than the 
corresponding values for crystalline modifications, this will lead to the fact that at high temperatures amor-
phous water will evaporate at an earlier stage, and then recondense on crystalline components into a crystal-
line form. 
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А.У. Алдияров, Х.И. Бейсенов, Ұ.П. Сүйінжанова, Д.Е. Ережеп 

Полиаморфты өзгерістерді судың криовакумды конденсаттарындағы  
нитрогенді криоматрицаларын зерттеу 

Конденсацияланған заттың қазіргі заманғы физикасының маңызды міндеттерінің бірі – түзілу шартта-
ры мен нəтижесінде пайда болған қатты фазаның қасиеттері арасында бірмəнді байланыс орнату. 
Оның шешімі қажетті қасиеттері бар материалдарды жасаудағы үлкен жетістіктерге ықпал етеді. Кез 
келген ғылыми-техникалық мəселелер сияқты, бұл тəсіл де кең ауқымды сұрақтарды шешу 
қажеттілігімен байланысты. Бұл бағыттағы табыстың негізі кешенді тек модельдік сынақтармен 
жүзеге асыру болып табылады, егер зерттелетін зат практикалық тұрғыдан маңызды болса, бірақ өзі 
қызықты физикалық қасиеттерге ие болса; мұндай объектілерді химиялық қасиеттерге толық 
жатқызуға болады. Сутегі байланысқан заттар, оларда ван-дер-Ваальс күштерінен басқа, 
молекулааралық сутегі байланысының болуына байланысты өзара əрекеттесу маңызды рөл атқарады. 
Алынған криоматриксті оқшаулау əдісі адсорбцияланған қабаттағы аралық сатыдағы су мен 
этанолдың таза компоненттерін криоконденсациялау процесінде сұйық күйге ұқсас қысқа диапазонды 
кластерлер түзілу процесі жүреді деген болжам жасайды. 

Кілт сөздер: кристалдану, қоспалар, əйнектің ауысу динамикасы, кристалл жасушасы, криоконденсация. 
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А.У. Алдияров, Х.И. Бейсенов, Ұ.П. Сүйінжанова, Д.Е. Ережеп 

Исследование полиаморфных превращений в криоматрице  
азота в криовакуумных конденсатах воды 

Одна из важных задач современной физики конденсированного состояния — установить однозначную 
связь между условиями образования и свойствами образующейся твердой фазы. Его решение будет 
способствовать крупному прорыву в создании материалов с заданными свойствами. Как и любая на-
учно-техническая проблема, такой подход связан с необходимостью решения широкого круга фунда-
ментальных проблем. Основой успеха в этом направлении является выполнение комплекса не только 
модельных испытаний, когда исследуемое вещество важно с практической точки зрения, но само по 
себе имеет интересные физические свойства. К таким объектам в полной мере можно отнести хими-
ческие свойства. Вещества с водородными связями, в которых, помимо сил Ван-дер-Ваальса, важную 
роль играют взаимодействия, обусловленные наличием межмолекулярной водородной связи. Полу-
ченный метод криометрического выделения делает предположение, что в процессе криоконденсации 
чистых компонентов воды и этанола на промежуточной стадии в процессе адсорбции происходит об-
разование кластеров, сосуществующих друг с другом. 

Ключевые слова: кристаллизация, смеси, динамика стеклования, кристаллическая ячейка, процесс 
криоконденсации. 
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