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Research of methods for introducing TiO2 nanoparticles into  
a micron matrix of BeO and TiO2 powders and their effect  

on the rheological properties of a casting slip 

This article presents the research results of methods for introducing nanodispersed TiO2 powders into a mi-
cron matrix of beryllium and titanium oxides. It is shown that the presence of nanoparticles over 5.0 wt.% 
negatively affects the rheological properties of the casting slip and vice versa, the addition of nanoparticles in 
the range of 0.1–2.0 wt.% contributes to reducing the viscosity and increasing the casting ability of the slip-
ping mass. Macrostructural analysis of the sintered billet indicates the complete absence of structural ele-
ments in the form of conglomerates of nanoparticles, or nano- and micro-TiO2 particles. The developed 
method of introducing nanoparticles makes it possible to obtain products with their uniform distribution over 
the entire volume of the workpiece by slip casting under pressure. Further, the authors of the scientific work 
planned to research the effect of nanoparticles on the thermophysical and impedance characteristics of the ob-
tained ceramics. Research into the effect of nanopowders on the electrophysical properties of beryllium ce-
ramics is not known in the scientific world. The most important properties that the BeO+TiO2 ceramics 
should possess is the ability to absorb ultrahigh frequency radiation, while it should heat up a little, i.e., con-
duct heat well. It is necessary to introduce the TiO2 phase into the composition of the BeO ceramics as much 
as possible to obtain a high coefficient. 

Keywords: TiO2 nanoparticles, charge, casting slip, rheological properties, beryllium oxide, ceramics, macro-
structure. 

 

Introduction 

Currently metals and alloys are increasingly being replaced by ceramic materials that have not only heat 
resistance and high strength, but also special electrical properties, for example, the ability to absorb electro-
magnetic radiation, which contributes to their widespread use in electronic engineering [1–2]. 

It is known that when TiO2 microparticles are added to the composition of ceramics based on BeO, its 
dielectric constant and electrical conductivity with appropriate heat treatment in a reducing atmosphere can 
change significantly [3–4]. The main advantages of absorption (BeO + TiO2) ceramics include the absence of 
magnetic properties and decomposing compounds, and the thermodynamic stability of properties in a wide 
temperature range [5]. It has been established that the addition of TiO2 impurities to BeO of at least 30 wt % 
leads to a significant increase in the dielectric constant, and an increase in the degree of TiO2 reduction is 
accompanied by an increase in the dielectric loss tangent [6]. 

Currently the most effective material is the composition BeO+30wt.% TiO2. Improvement of the per-
formance characteristics of such ceramics can be achieved by introducing TiO2 nanoparticles into its compo-
sition, which will contribute to the expansion of the operating frequency range, increasing the stability of 
parameters during operation and the impact of external factors, expansion of the nomenclature in the field of 
special applications [7]. 

Radiation is absorbed by the entire volume of the particle with a decrease in the size of TiO2 particles, 
down to nanoscale values [8]. 

A smaller crystal size leads to a larger specific surface area and, consequently, to an increase in the 
number of active centers, bulk and surface defects available for reactions. Reducing reactions proceed more 
efficiently and changing the electrical and chemical properties. As a result of the quantum size effect, the 
energy structure changes significantly, leading to optical absorption, photoluminescence, optical nonlinearity 
and other properties [9]. 

Thus, the questions of the influence of TiO2 nanoparticles on the mechanisms of billet formation and 
the rheological properties of the casting slip of (BeO+TiO2)-ceramic have not been studied. There is no clear 
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justification for the effect of TiO2 nanoparticles on the phase composition and mechanisms of structure for-
mation, structure of such ceramics during sintering [10]. 

Synthesis and research of nanophase high-temperature ceramics with increased density, thermal con-
ductivity, special structural and electrophysical properties is useful for electronic engineering and instrument 
making in means of radar, navigation and long-distance communications. Interest in composite ceramics 
based on beryllium oxide with introduced impurities is caused by the needs of new areas of radio electronic 
engineering and special instrumentation, the development of modern long-distance communication systems, 
radar and navigation, and broadband systems for special purposes. Beryllium oxide in the process of sinter-
ing composite ceramics gives TiO2 increased density, mechanical strength and thermal conductivity. Differ-
ent ratios of TiO2 components in ceramics and the degree of its reduction make it possible to control the 
amount of ultrahigh frequency absorption by such ceramics. In connection with the above, the development 
of a technology for obtaining a new material based on beryllium oxide modified with TiO2 nanopowders is 
an important task. The aim of this work is to study the methods of introducing nanodispersed TiO2 powders 
into the micron matrix of beryllium and titanium oxides. 

Material and methods of research 

The measurement of the specific surface area was determined on a device for dispersive analysis of the 
PSC series, the principle of operation of which is based on the method of gas permeability of Kozeny and Kar-
man [11]. 

The determination of the bulk density of the researched powders was carried out according to the ap-
proved factory methodology based on the determination of the bulk density of a unit volume of free bulk pow-
der. The bulk density of the powder with this measurement method is determined by the formula: 

ߛ  ൌ
మିభ


 (1) 

where,  — bulk density of powder, g/сm3; Р2 — powder cylinder weight, g; Р1 — empty cylinder weight, g; 
 — calibrated cylinder volume (25 сm3) [12]. 

The microstructure, granulometric structure, and phase analysis of powders and sintered samples were 
studied by using a scanning electron microscope with a JSM-6390LV, 2007 energy dispersive microanalysis, 
with a resolution in high vacuum up to 3 nm and the possibility of obtaining images in secondary and reflect-
ed electrons. 

X-ray phase analysis of the powders and the obtained samples was carried out by using an X'PertPRO 
X-ray diffractometer of thr PANanalytical firm, 2005. 

The main parameter of the slip mass «casting ability» was determined on a special factory-made instal-
lation PLC-1, which is designed to determine the casting ability of hot thermoplastic slips prepared from ce-
ramic mixes under conditions close to the operation of injection molding machines [13]. 

Determination of viscosity η in the temperature range 55–80 °C was carried out by using a rotational vis-
cometer RV-8. 

The measurement sequence was in accordance with the recommendations of the factory instructions, 
where the viscosity value was calculated by the formula: 

ߟ  ൌ ܭ
ାିி

ఠ
  (2) 

where ߟ — experiment of material viscosity, poise; ܲ — the total weight of the load installed on two cups, g; 
݉ — weight of cups with hooks, g; ܨ — friction loss in bearings, g; ߱ — inner cylinder rotation speed, sec-1, 
which is calculated by the formula: 

 ߱ ൌ
ହ

ఛ
  (3) 

where ߬ — time of five revolutions of the inner cylinder; ܭ — device constant, which depends on the dimen-
sions of the working cylinders and the height of the material loading, сm-1·s-2, is calculated by the formula: 

ܭ  ൌ
ோ∙

଼గమൣభ
మ∙మ

మ∙/൫మ
మିభ

మ൯ାభ
య∙మ

య/൫మ
యିభ

య൯൧
  (4) 

where ܴ — the radius of the pulley on which the thread is wound, сm; ݎଵ- radius of the inner cylinder and hem-
isphere, cm; ݎଶ — radius of the outer cylinder, cm;	݄ — immersion height of the inner cylinder into the materi-
al, cm; ݃ — acceleration of gravity 981 cm/s2 [14]. 

The value of apparent density was determined according to [15]. 
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Results and discussions 

It is necessary to carry out complex physicochemical and mechanical studies of the feedstock and sin-
tered products obtained on its basis to predict and correctly interpret the mechanisms of structure formation 
in ceramics based on BeO with the addition of micro- and nanocrystalline TiO2 powders, the formation of a 
structure with specified parametric characteristics and properties. 

The highly sintered beryllium oxide powder used in this work was obtained by grinding sintered ceram-
ic scrap in vibrating mills. The characteristics of the powder meet the requirements of TU 95–143–79, for 
grade «B2» (Table 1). 

T a b l e  1  

The main characteristics of the used powder of beryllium oxide grade «B2» 

Characteristic, № of batch  p 67 
Bulk weight ρо ×103 kg/m3 0.77 
Specific surface area S, сm2/g 11 000 
Moisture % weight 0.08 
Average crystal size, μm 5 

Elemental content  
of impurities, % wt 

boron 1.7·10–5 
silicon 7.3·10–3 
manganese 8.2·10–4 
iron 5.1·10–2 
magnesium 5.2·10–3 
chrom 1.0·10–2 
nickel 1.1·10–2 
aluminum 3.2·10–2 
copper 8.0·10–4 
zinc 7.5·10–3 
calcium 4.2·10–3 
silver 1.1·10–5 
cadmium 1.2·10–5 
lithium 6.7·10–4 
sodium 8.7·10–3 

The amount of impurities, % wt 0.14 
 
The main characteristics of the used micron TiO2 powder of the rutile modification in terms of quality 

and chemical composition, according to the passport data, are given in Table 2. 

T a b l e  2  

Main characteristics of the used micron TiO2 powder, RK grade, rutile modification 

The name of indicators TI requirements, % Analysis results 
Mass fraction of titanium dioxide, %, not less 99 99.5 
Mass fraction of rutile form, %, not less 97 100 
Mass fraction of iron compounds in terms of Fe2O3, %, 
no more 

0.08 0.05 

Mass fraction of phosphorus compounds in terms of 
P2O5, %, no more 

0.03 0.03 

Mass fraction of sulfur compounds in terms of SiO3, %, 
no more 

0.03 0.01 

Mass fraction for silicon compounds in terms of SiO2, 
%, no more 

0.15 0.15 

Mass fraction of «metallic iron», %, no more 0.02 0.01 
Specific surface, cm2/g, within 3300–4600 4060 
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Micron titanium dioxide powd
№ 0045. Powders with a specific su
was 5–10 μm. Surface morphology
shown in Figure 1 (a, b). 
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located stainless steel tank on a rigid
which the charge is mixed, and comp
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Figure 7. Graph of the dep
of nanoparticles in 
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Conclusions 

1. In this work an effective method is proposed for introducing nanodispersed TiO2 powders into a mi-
cron matrix of beryllium and titanium oxides, in which air bubbles, rising upward according to the Archime-
des law through the entire volume of the charge, allow the movement of flows in the liquid not only horizon-
tally, but also in the vertical direction. 

2. It has been experimentally shown that the addition of nanoparticles from 5 to 30 wt% TiOଶ
୬ୟ୬୭ nega-

tively affects the casting properties of slips (viscosity and casting ability) and, consequently to the quality of 
sintered products in the form of cavities, impurities and excessive porosity. 

3. As a result of research, the effect of the concentration of nanoparticles on the main technological pa-
rameters, such as specific surface area, bulk density, viscosity, casting ability, pressure on the slip during 
billet molding, the optimal concentration of nanopowder of TiO2, — 0.1 — 2.0 wt. % was established, 
providing normal indicators of technological parameters. 
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А.В. Павлов, Е.Е. Айымханов, Ж.Б. Сагдолдина, А.Б. Касымов, Д.Р. Байжан, М.С. Жапарова 

TiO2 нанобөлшектерін BeO жəне TiO2 ұнтақтарының микрондық  
матрицасына енгізу əдістерін жəне олардың құю шликерінің  

реологиялық қасиеттеріне əсерін зерттеу 

Мақалада нанодисперсті титан оксиді TiO2 ұнтақтарын бериллий мен титан оксидтерінің микрон 
матрицасына енгізу əдістерінің зерттеу нəтижелері көрсетілген. 5 %-дан жоғары нанобөлшектердің 
болуы құю шликерінің реологиялық қасиеттеріне теріс əсер етеді жəне керісінше, 0,1–2,0 мас. % 
аралығында нанобөлшектердің қосылуы тұтқырлықты төмендетуге жəне жылжымалы массаның құю 
қабілетін арттыруға ықпал етеді. Агрегатталған дайындаманы макроқұрылымдық талдау 
нанобөлшектердің конгломераттары немесе нано- жəне микро- TiO2 бөлшектері түрінде құрылымдық 
элементтердің толық болмауын көрсетеді. Нанобөлшектерді енгізудің дамыған əдісі өнімді шликерді 
құю арқылы дайындаманың бүкіл көлеміне біркелкі таратуға мүмкіндік береді. Ғылыми жұмыстың 
авторлары болашақта алынған нанобөлшектері бар керамиканың жылу физикалық жəне импеданс 
сипаттамаларына нанобөлшектердің əсерін зерттеуді жоспарлады. Ғылыми əлемде наноұнтақтардың 
бериллий керамикасының электрофизикалық қасиеттеріне əсерін зерттеу туралы белгісіз. Бериллий 
оксиді жəне титан оксидтері қоспасы ВеО+TiO2 керамикасының ең маңызды қасиеттерінің бірі — аса 
жоғарғы жиілікте сəулеленуді сіңіру қабілеті, ол аз қызуы керек, яғни жылуды жақсы өткізеді. 
Жоғары коэффициентті алу үшін ВеО керамика құрамына TiO2 фазасын мүмкіндігінше көп енгізу 
керек. 

Кілт сөздер: TiO2 нанобөлшектері, шихта, құю шликері, реологиялық қасиеттері, берилий оксиді, 
керамика, макроқұрылым. 
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Исследование методов введения наночастиц TiO2  
в микронную матрицу порошков BeO и TiO2 и их влияния  

на реологические свойства литейного шликера 

В статье представлены результаты исследований методов введения нанодисперсных порошков TiO2 
в микронную матрицу оксидов бериллия и титана. Показано, что наличие наночастиц свыше 
5,0 мас. % отрицательно влияет на реологические свойства литейного шликера, и, наоборот, добавле-
ние наночастиц в диапазоне 0,1–2,0 мас. % способствует снижению вязкости и повышению литейной 
способности шликерной массы. Макроструктурный анализ спеченной заготовки свидетельствует о 
полном отсутствии структурных элементов в виде конгломератов наночастиц или частиц нано- и мик-
ро-TiO2. Разработанный способ введения наночастиц позволяет получать изделия с их равномерным 
распределением по всему объему заготовки методом шликерного литья под давлением. В дальнейшем 
авторы научной работы планировали исследовать влияние наночастиц на теплофизические и импе-
дансные характеристики полученной керамики. Об исследованиях влияния нанопорошков на элек-
трофизические свойства бериллиевой керамики в научном мире не известно. Самыми важными свой-
ствами, которыми должна обладать керамика ВеО+TiO2, это способность поглощать СВЧ-излучение, 
при этом она должна мало нагреваться, т.е. хорошо проводить тепло.  Для получения высокого коэф-
фициента необходимо как можно больше вводить в состав керамики ВеО фазу TiO2. 

Ключевые слова: наночастицы TiO2, шихта, шликер, реологические свойства, оксид бериллия, кера-
мика, макроструктура. 
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