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The investigation of a physical pendulum motion,
which move along a horizontal axis

The article presents a study of the physical pendulum, taking into account the force of friction in the kinemat-
ic pair, as a result of which oscillations are damped. Graphs of the dependence of the pendulum deflection
angle a and the angular velocity on time for different values of the velocity v have been given. It has been es-
tablished that the speed of the sleeve significantly reduces the amplitude and angular velocity of the pendu-
lum, and the frequency of its oscillations does not depend on the presence of dry friction in the system. The
dependences of the change in the amplitude of pendulum oscillations have been given and the results of nu-
merical integration of the differential equation of pendulum motion have been obtained. The graphical de-
pendences of the pendulum deflection angle and the movement of the sleeve x along the horizontal axis from
time to time have been obtained at different values of the coefficient of friction. It has been found that during
the first five seconds of the system movement, the axial speed of the sleeve is practically independent of the
coefficient of friction (at /= 0.3... 0.5). To verify the obtained results, an experimental laboratory installation
has been designed and manufactured. Theoretical studies are satisfactorily consistent with experimental data,
with an error not exceeding 16%. The obtained dependencies can be used in the design and study of various
mechanisms, the motion of which is described by similar differential equations. Such mechanisms include in-
ertial conveyors, the gutter of which performs in addition to longitudinal and transverse oscillations. In addi-
tion, the proposed technique can be used in the study of the motion of bulk materials in an inclined cylinder,
which performs torsional oscillations around the axis of symmetry.

Keywords: physical pendulum, oscillations, speed, amplitude, sleeve, experimental laboratory installation.

Introduction

The study of a mathematical pendulum motion is a classic problem of nonlinear oscillations, the solu-
tion of which has an exact analytical solution, especially at small values of the amplitude of oscillations. In
contrast to the mathematical pendulum, when studying the operation of a physical pendulum, it is necessary
to take into account the force of friction in the kinematic pair, as a result of which the oscillations have been
damped.

However, in technology, there are oscillating processes in which dry friction does not reduce the ampli-
tude, but, conversely, sometimes leads to self-oscillations. The motion of a spring-loaded cargo on an infinite
moving belt [1, 2], or the motion of a Freud pendulum is an example of such oscillations, that rotates uni-
formly with some angular velocity [3].

The motion of a mechanical system consisting of a rectilinear rod with a ring passing through an in-
clined rectilinear guide and a rod oscillating in a vertical plane passing through a guide has been considered
in [4]. Therefore, there is a problem of studying the motion of the pendulum when the rod will oscillate in a
vertical plane that passes perpendicular to the guide. However, the ring will move along the guide.

This study aims to determine the motion law of a physical pendulum, the suspension point of which
moves along the axis relative to which the oscillation occurs.

The theory of linear oscillations in the presence of viscous friction forces has been the most thoroughly
developed [5, 6]. Therefore the study of oscillations with dry friction, and especially nonlinear, has been
connected with considerable mathematical difficulties, and in some cases, only numerical solutions of the
obtained differential equations of the motion or the approximate solution have been possible [7-9].

The averaging method is one of the effective approximate methods of system analysis with nonlinear
friction. It allows to study not only the stationary mode of system motion but also the process of establishing
the stationary mode [10-15].
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Experimental

The motion of a physical pendulum consists of a sleeve 1, which is installed with the ability to slide
along a fixed horizontal rod 2, as well as rotate around the axis of the rod. The rod 3 is fixed to the sleeve 1,
at the end of which the load 4 is placed (Fig. 1).

IR .
-
_3 ) 7 >
4 4
]
—]
A

Figure 1. Scheme motion of a physical pendulum

Since the sleeve can move along the horizontal axis, there are two options for this motion:

1. To set the variation speed law v of the sleeve relative to the rod v=v(t);

2. To set the variation law of the horizontal force F, which is attached to the sleeve F=F (t).

The first option applies to systems with kinematic transformation of dry friction, and the second — with
dynamic transformation.

In the presence of dry friction and the absence of axial movement of the sleeve, the equation of motion
will have the form:

I-d+mglsina + Mysgna =0, @
where, Mt — the moment of friction forces
Mr=m-g-r-f-cosa,

r — shaft radius; f — consolidated coefficient of frictionf = %-fo [16]; fo — the coefficient of sliding friction

between the sleeve and the shaft.
At small values of an angle a: sina = a; cosa =1, My =m-g-r-f.
When the pendulum is deflected at an angle ¢, the equation of motion (1) will be:
[ &+ mgla =mgrf. 2
If the mass of the load is much greater than the mass of the rod and sleeve, it can be assumed that the

moment of inertia of the pendulum will be equal to: I = m - [?

Enter the notation w? = % % =b

After replacing the equation (2) takes the form:
a+w? a=w?b. (3)
The coefficient b is the pendulum deflection under the action of the maximum moment of friction.
If the pendulum is deflected by a value less than or equal to b, the motion will not occur, because the
moment of gravity will be less than the moment of resistance.
The general solution (3) has the form [5]:

a = b + ¢, coswt + ¢, sin wt. 4)
Taking into account the sustainable integration (t = t, = 0; a = ay; @ = dy = 0, has been get:
a=b+ (ag — b) coswt. 5)

The law of motion will be fair till @ < 0. Because @ = —w - (g — b) * sin wt, then the speed will be
negative by the time point ¢; = %
At this point, the pendulum will stop:
a; =b+ (ag—b)-cost = —(ay — 2b). (6)
Consider the first variant of motion, when the sleeve moves relative to the shaft at a constant speed v’
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With simultaneous oscillation of the pendulum and the sleeve motion, the direction of friction between
the sleeve and the shaft will depend on the speed v of the sleeve motion and speed u of the sleeve rotation
motion, which occurs due to oscillations of the rod:

u=a-r, @)
where, d:';—‘; —angular velocity of the pendulum; « — the pendulum deflection angle from the vertical.

The normal reaction N of the sleeve surface will be equal:

N=m-g-cosa+m-a?-l (8)
COSY = —— = ar 9
Vu2+v? J(a-'r)2+v2
The differential equation of rotational motion of the pendulum relative to the axis should be written:
I-d:m-g-l-sina—f-(m-g-l-cosa+md2r)-r-L (10)

fv2+(r-d)2

Consider small oscillations sina = a;cosa =1;r-d* < g
Taking into account the assumptions, equation (10) will have the form:

. _ g r ra
i=2a-fgr —— (11)
! e v2+(ra)?

A replacement should be done: % = w?; fgl% =4
Then,

& =—wla— A —1% (12)
v24(ra)?
The equation (12) is not reduced to quadratures and its solution can be obtained by numerical or ap-
proximate method.
Figures 2, 3 are graphs of the dependence of the pendulum deflection angle a and the angular velocity a

of time to different values of the velocity v, at r=0,01 m, f=0,4, 1=0,5 m, ap=15°, @,=0 rad/s .
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Figure 2. Graph of the pendulum deflection angle « of time for different values of velocity u
1-at u=0.001m/s; 2- at u=0.006m/s; 3- at u=0.008m/s

Figure 3. Graph of the dependence of the angular velocity ¢ of time for different values of the velocity u
1- at u=0.001m/s; 2- at u=0.006m/s; 3- at u=0.008m/s
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The graphs show that the speed of the sleeve significantly affects the reduction of the amplitude and an-
gular velocity of the pendulum, but the frequency of its oscillations does not depend on the presence of dry
friction in the system.

Dimensionless quantities should be used to obtain an approximate solution of the equation of pendulum

motion:
w-r-a. fgr?

e E — o da  ; ds‘
T=w-'t; &= > lsz—y, dtf ;dT = w - dt.

af _ d (wra) _ d  (wra) _ar ¢ _d(ary _ L (ar\_ T

Then'E_E (v)_wdt (v)_ &= d‘r dr(v)_a)dt(v)_wva

Then the equation (12) takes the form

- (13)

E+E+ p—==
’1+§‘2
The p value has been suggested small and the averaging method has been used [4].
The variables &; = &; &, = & has been involved and rewritten (13) in the normal form of Cauchy

1 :fz;f'z =—$— U
/1+§12

& =asing; & = acosg.
Turn to the equations in the standard form of the averaging method

Replace variables

a=—-u- aﬂ (15)
J1+a2cos2 ¢
. sin@-cos ¢
=141 s, (16)
Average the right parts (15) and (16) on the fast variable ¢
1 (2m singcos¢@ _
Efo J1+a? coszfpd(p =h (7
1 r2m  acos? _acos“ g _
Efo J1+a?cos? @ dp = I (18)
In equation (17) a replacement should be made
z =1+ acos? . (19)
dz = —a2 cos @ sin @ dg. (20)
Then
1 /2m dz 1 p2m -1 1 1
11=5f0 _Za\/}:_ﬁfo Z 2dZ=—E'2Z2. (21)
Returning to (17) it should be:
1 1
L =——\1+ acos? ¢ |2(;T = —%(\/1 + acos?2m —+/1 + acos? (p) =0.
So,
=1, (22)
In equation (15) a replacement should be made
_ a
2 k= NEFTEL (23)
2 _
where a® = —-
Then:
> 2 —k2+k2cos?¢ _ |1-k2(1-cos?¢@) 1 \/ﬁ
\J 1+ a?cos J - —J - == 1 — k“sin® ¢. (24)
1~ k cos? (pd(p 2k ~ cos? (pd(p 2k 1
=4 f 0 J1-k2sin2 ¢ f 1-k? smzq) F(k) E(k)' (25)

where F(k) —the complete elliptic mtegral has been made W|th the module k; E (k) — complete elliptic inte-

gral of the second kind [17].
da 2w
) E:—?kB(k), (26)
where B(k) = 5 (F(k) — E(k))
The system of equations (22), (26) can be integrated in quadratures.
Perform differentiation by T and get:
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=1 -kt) % (27)
Then the equation (26) takes the form
dk _ 2 (1 - k2)2 - B(K). (28)
Integrate (22) and (28) under |n|t|al condltlons o(t9) = @o; k(tg) = ko;
. ” p=1 +2<P0 — Tp- (29)
T s
= foo—?d‘[. (30)

Ko 1.(1-k2)2-B (k)
The left part (30) is easily tabulated, because it depends only on the dimensionless value k. Table 1 il-

lustrates the value of G(k) [4].
k dk

oy~ = G() = G (ko). (31)
k-(1-k2)Z-B(k)
Table 1

The values free oscillations of the pendulum in the presence of dry friction and axial motion of the sleeve of G(k)

k G(K) K G(K) k G(K)
0.01 -4.3939 0.3 -0.8268 0.9 2.2917
0.02 -3.9758 0.4 -0.3884 0.92 2.6095
0.03 -3.6380 05 0 0.94 3.0267
0.05 -3.1181 0.6 0.3828 0.96 3.6102
0.1 -2.2915 0.7 0.8054 0.98 45019
0.2 -1.3903 0.8 1.3510 0.99 5.1568

In Figure 4, the dependences of the change in the amplitude of pendulum oscillations obtained as a re-
sult of numerical integration of the differential equation of pendulum motion and the approximate solution
are given.

Average value Aa

0 0.001 0.002 0.003 0,004 0,005 B
u, ns

Figure 4. Graph of the dependence of pendulum oscillations amplitude decrease on the speed of the sleeve u

The graphs show that the approximate solution can be used in the study of such mechanical systems,
especially when the values of the speed of the sleeve u>0.005 m/s, when the error of the results does not ex-
ceed 12%.

Consider the second variant of system motion, namely assume that the sleeve moves along the guide
under the action of the horizontal force F.

In this case, the differential equations take the form:

G x
([ mE=F g

{ I& = —mglsina — mger
\ 42+ (ray2

(32)
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Taking into account the accepted assumptions, the system (32) will be:

v _ o x
[ #=Fi=19 Frrea
2 fgr ra (33)

ad=—-wa——-
F
where F; = —

k r /x2+(roz)2
—

As a result of the numerical solution of the system (33), obtain the dependences of the pendulum deflec-
tion angle @ and the movement of the sleeve x along the horizontal axis of time, at different values of the
coefficient of friction (Fig. 5- 6)
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1- at f=0.3; 2- at f=0.4; 3- at f=0.5
Figure 5. Graph of the pendulum deflection angle a° of time t, at different
values of the coefficient of friction f (r=0.01 m; I=0.5 m; F=2; 0o=0"; =1 rad/s)
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Figure 6. Graph of the dependence of the sleeve motion x along the horizontal axis of time, at different values of the
coefficient of friction (r=0.01 m; f=0.4; 1=0,5 m; 0,=15% (=1 rad/s)

The graphs demonstrate that during the first five seconds of the system motion, the axial speed of the
sleeve is practically independent of the coefficient of friction (at /=0,3...0,5). Further, the speed will de-
crease, and for different values of the coefficient of friction, this change will be different. This is due to the
fact that the amplitude of oscillations and the angular velocity of the pendulum will decrease, and, conse-
guently, the axial component of the friction force between the sleeve and the rod will increase.

Since the oscillation frequency of the physical pendulum does not depend on the force of friction, to ob-
tain an approximate solution of the equation of the sleeve motion, assume that at the initial moment of time
the motion of the pendulum occurs by law:

a = g cos wt (34)

Consider that the pendulum moves from the equilibrium position due to the initial velocity c.
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Then the first equation of system (33) takes the form:

=P = [ T (35)
Proceed to dimensionless quantities:

T=wt,dr=a)dt,f=%‘;,x=ff",x=%,é=3—i
Then,

= 850 = o] = e
X = %(édor) = Edgrw
Then equation (35) takes the form:
(36)

£
Sagr=F, — fg-——
&24sin2 7

or

fg

E=uly ———— 37)
/Ez+sin21
Qorw’

Inour case at f = 0,4, r = 0,01, ao=1 rad/s, ay = 1,2, w = 4,92 c™.
0,4:10

F
where, y = ot U=

= 1,26:0,01-4,92 =100 > 1.
Find the approximate periodic solution of equation (37). To do this, write it as follows:
—1aé_ ¢
W=y (38)

&24cos?T
The resulting equation is an equation with a small parameter for the derivative. According to
Tikhonov's theorem [18], limiting the degenerate approximation and assuming the left-hand side of (38) is
Zero, obtain:

¢ = —~=[cost] (39)

1-y2
The obtained dependence determines with accuracy the order of x~! the main in this problem slow
component of the speed of the sleeve motion. Average each part over the period of the pendulum oscillation.
Denote the average speed of the sleeve 9.

. 1 (%7,
2 0
1 2m_y ) 4 5 4
— I T2 608 dr = — — Jgcostdr = py e (40)
So,
2
=2l (41)

From equation (40) it is seen that the stationary mode is possible only under the condition y <1, and at
v>1 the stationary mode will be absent and the sleeve will move with some non-zero acceleration.

Then the average dimensional speed of the sleeve will be equal:

v=09"7"d, (42)

Figure 7 shows graphs of the dependence of the average dimensionless speed of the sleeve along the rod
on the coefficient of friction f, and the value of the relative force F;.

The experimental laboratory setup has been designed and manufactured to verify the results. Its scheme
is shown in Figure 8a, and the general view in Figure 8b.

The horizontal rod 1 is rigidly attached to a fixed base 2. On the rod is a sleeve 3, which is installed
with the ability to move along the rod and rotate around its axis. The rod 4 is rigidly attached to the sleeve 3,
at the lower end of which is the load 5. At the second end of the rod 1 is a block 6, through which is passed a
weightless thread, one end of which is attached to the sleeve 3, and the other to the load 8, the weight of
which can be changed. During the experiment, the load 5 is given an initial speed V,, while releasing the
sleeve 3, which, under the action of gravity of the load 8 begins to slide along the rod.
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Figure 7. Graphs of the dependence of the average dimensionless speed of the sleeve
along the rod on the coefficient of friction f, and the value of the relative force F;

By measuring the time during which the sleeve will go a certain path, we determined the average speed
of the sleeve. Table 2 represents the results of the experiment.

2 7 6

a)

b)

Figure 8. General view: a — constructive scheme; b — the experimental setup

Table 2
The results of the experiment are the average speed of the sleeve

Fi, m/s® V1, m/s Vg, m/s 35, %
1 0.0066 0.0057 15.7
15 0.0073 0.0065 12.3

2 0.0078 0.007 11.4
2.5 0.0085 0.0079 8.2

3 0.0092 0.0087 5.7

Conclusions

These graphs show that at the value of F;=4, the maximum value of the dimensionless speed will be at
f=0.45. At higher values of the coefficient of friction, the dependence of velocity on relative force is less
pronounced. Given a constant value of the amplitude of pendulum oscillations, the average speed of the
sleeve will be a constant value. As the oscillations of the pendulum fade, the speed of the sleeve will de-
crease. However, at the beginning of the motion, the error does not exceed 12% at f <0.3 and 18% at f
<0.45.As can be seen from Table 2, the results of theoretical studies agree satisfactorily with the experi-
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mental data, with an error not exceeding 16%. Similarly, it is possible to determine the speed of the sleeve
under the action of gravity, when the rod is inclined at an angle to the horizon that does not exceed the value
of the angle of friction. The obtained dependences can be used in the design and study of various mecha-
nisms, the motion of which is described by similar differential equations. The proposed technique can be
used in the study of the motion of bulk materials in an inclined cylinder, which performs torsional oscilla-
tions around the axis of symmetry.
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KoeageneH och 00ibIMEH KO3FAJATHIH MAATHUKTIH
(pu3uKaNbIK KO3FAJIBICHIH 3epPTTEy

Makanaja HoTHKeciHAe TepOemicTep/iiH COHyiHe dKeNeTiH KHHEMAaTHKAJIbIK JKYIITaFbl YHKEeNiC KYLIiH ecKepe
OTBHIPBIT, (U3UKATBIK MAsSTHHK IKYMBICHIHBIH 3epTTeyl OepiireH. MasSTHUKTIH aybITKy OYpBIIIBI MEH
OYPBIMITHIK KBUIIAMIBIKTBIH YaKbITKA TOYEIIUTITiHIH rpaduKTepi V )KBUIAaMIBIKTEIH OPTYPIIl MOHIEp] YIIiH
KeNTipireH. MasTHHK TepOelicCTepiHiH aMIUTUTYIachl MEH OYPBIITHIK JKbUIIAMIBIFBIHBIH TOMEHJCYIHE
TOIIKEHIH KBUIAaMIBIFBl AlTapIIBIKTall ocep €TEeTiHI aHBIKTAJbl, ajl OHBIH TepOeIic XKHLIIr XKyiene Kyprak
y#ikenicTiH GonybiHa OaiiaHbICTEI eMec. MasTHUKTIH TepOenic aMIUIMTYIAaChIHBIH ©3repyiHe KoHEe MasTHHUK
KO3FaJIbICBIHBIH TU(depeHIanIpK TeHACYiHIH CaHIBIK HHTETPAlMSICHIHBIH HATIXKEIEpiHe TIyelaiTiKTep
KenTipiareH. Yikenic ko3(dUIMEHTIHIH opTypJsli MOHAEpI YUIIH MasTHHUKTIH aybITKY OYPBIIIBIHBIH JKOHE
TOJIKeHIH X KeJICHEH OCh OOMBIMEH yaKbITKa OailIaHBICTBI OPBIH ayBICTBIPYBIHBIH IPaMKaNbIK TOYEIIUIIri
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anplHFaH. MasaTHUK TepOeiCTepiHiH aMIUIMTYAAChIHBIH ©3TepyiHiH TOYCNIUIKTepi JKOHE MAasTHUK
KO3FaJIbICBIHBIH AU((epeHIHaNIbIK TCHACYIHIH CaHIbIK HHTErpaiay HOTHKeNIepi KeaTipiireH. MasTHUKTIH
ayBITKY OYpBILIBIHBIH TpadUKaIbIK TOYEIITri KoHe yiikenic Kod(hGHUIUEHTIHIH opTypsi MOHIEpi YIIiH
MasTHHKTIH ayBITKY OYPBIIIBIHEIH XKSHE TOJIKEHIH X KOJIJeHEH 0Ch OOMBIMEH yaKbITKa OPBIH aybICTHIPYBIHBIH
KO3FaJIbICHl anblHABL JKyle KO3FalbICHIHBIH QJIFAIIKBl 0eC CEeKyHABIHAA TOJIKEHIH OCHTIK >KBIIJaMIBIFBI
yiikenic koadduuueHTtiHe Toyenai emec ekeHuiri ansikranasl (F=0,3.0,5 xesinnme). Hotmxkenepai Tekcepy
YIIIH SKCHEPUMEHTTIK 3epTXaHAJBIK KOHIBIPFEI JKOOAJaHBIN, AaibIHAANAbl. TeopHsuIBIK 3epTTeylep
SKCIIEpUMEHTTIK AepPeKTePMEH KemicinreH, Oy perre Karenmik 16%-aaH acnaiiabpl. AJBIHFaH TOYESIAITIKTEPi
KO3FaJIbICHl YKcac Au¢epeHInaNabIK TeHACYICPMEH CHIIATTANATBIH SPTYPil MEXaHU3MAEPi jko0anay MeH
3epTTeyAe KoijaHyFa Oomansl. MyHIail MexaHM3MIepre OOMIBIK XoHE KeJIeHEeH TepoOemicTepaeH Oacka,
Haya ’KacalThIH WHEPLISIIBIK KOHBelepiep xataapl. COHBIMEH KaTap, YCHIHBUIFAH SAICTI CHUMMETPUS OCIHIH
aifHayaceiHAa aifHanMainbl TepOericTep JKacaWTHIH Kejbey IMUIMHAPIETi CYChIMAaNbl MaTepHAIap.IbIH
KO3FaJIBICHIH 3epTTey e KOJaHyFa OoJasl.

Kinm ce30ep: QusnkanplK MasTHHK, TepOemicTep, JKbUIAAMIBIK, aMIUIUTyJa, TOJIKe, 3KCIEePUMEHTTIK
3epTXaHaIBIK KOH/BIPFEL.

O. JIsmyk, JI. Cepunko, U. I'eBko, 1. Cepuiiko, U. JIynus,
1O. Bogk, M. JleBkoBbry, O. [{onb

HccaenoBanue Gu3nueckoro 1BMKeHNsI MAITHUKA,
JABMKYIIErocsi BA0Jb TOPU30HTAIBLHON OCH

B craThe mpuBeeHBI UCCIIETOBaHUS paOOTHl (PH3MUSCKOTO MAasSTHHKA C YUETOM CHJIBI TPCHHUS B KHHEMaTHYC-
CKOM Tape, B pe3yibTaTe KOTOPOW MPOMCXOAUT 3aTyXaHue KoiicOaHuil. [IpuBeneHbI rpadUKi 3aBUCUMOCTH
yria OTKJIOHEHHS MasTHHKA M YIJIOBON CKOPOCTH OT BPEMEHHM JUIS Pa3IMYHbIX 3HAYCHHIA CKOpOCTH V. YcTa-
HOBJICHO, YTO CKOPOCTh JIBIDKCHHUS BTYJIKH OKa3bIBACT CYIECTBEHHOC BIMSHUC HA YMECHBIICHUE aMILIUTY/IbI
U YIJIOBO# CKOPOCTH KOJeOaHMil MasiTHHKA, IPU ATOM YacTOTa €ro KoyiebaHuil He 3aBUCHT OT HAIUYHUSI CYyXO0-
ro TpeHus B cucteme. [IpuBeIeHb! 3aBUCHMOCTY M3MEHEHHST aMILTUTY Il KOJIeOaHU# MassTHUKA U Pe3yIIbTaThl
YHCIICHHOTO MHTErpupoBanus Au(epeHIMaTbHOr0 ypaBHEeHHs ABMKEHNS MasTHUKA. [lomydensl rpadude-
CKHE€ 3aBHCHMOCTH YIJla OTKJIOHEHHS MasTHHKA M MMEPeMEICHHE BTYJKH X BJOJIb TOPH30HTAIBHOW OCH OT
BPEMCHH, TIPU Pa3HBIX 3HAYCHUAX KO3 HUIIMCHTA TPCHUS. Y CTAHOBIICHO, YTO B TICPBBIC MATh CEKYHJI JIBIIKE-
HUSI CHCTEMBI OCEBas CKOPOCTh BTYJKH MPaKTHUYCCKH HE 3aBHCUT OT Koddduiuenta tpeHus (mpu
£=0,3...0,5). [l npoBepku pe3ysbTaToB OblIa CIPOSKTHPOBAaHA M M3TOTOBJICHA SKCICPUMEHTAIbHAS J1abo-
patopHasi ycTaHOBKa. TeOpeTHUECKHE MCCICTOBAHUS COTIACYIOTCS ¢ IKCIEPUMEHTAIBHBIMU TAHHBIMH, TPH
9TOM MOTPENIHOCTh He mpeBsbimaet 16 %. [TonydeHHble 3aBUCUMOCTH MOTYT OBITh HCIOJIB30BAHBI [IPH MTPOCK-
TUPOBAaHWHM W HWCCIIE[OBAHUU PA3NUYHBIX MEXAHHU3MOB, [BIDKCHHE KOTOPBIX OIMKMCBHIBAETCS AHATOTHYHBIMU
mudhepeHIMATBHBIMU ypaBHEHHSIME. K TakuM MeXaHH3MaM OTHOCSTCS MHEPIIMOHHBIE KOHBEWEpHI, HKenoo
KOTOPBIX COBEPINAET, IOMHMO MPOJONBHBIX, U HOMepedHbie Koiebanus. Kpome TOro mpemioxKeHHy0 MeTo-
JIUKY MOKHO HCIIOJIb30BaTh TMPH HCCIICAOBAHUN JBHKCHUS CHIMYYHX MATCPHATIOB B HAKJIOHHOM LIJIMHIpPE,
COBEPIIANOIIEM KPYTUIbHBIC KOJICOaHUS BOKPYT OCH CUMMETPHUH.

Kuiouesvle crosa: HU3MUECKUl MasTHUK, KOJCOAaHHS, CKOPOCTh, aMILUTHTY/A, BTYJIKA, SKCIIEPHMEHTAIIbHAS
71abopaTopHasl yCTaHOBKa.
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