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Finite element modeling of heat propagation of a complete rod of
constant cross-section

In this paper, the definition of the temperature distribution field for a rod made of heat-resistant alloy E148 is
introduced. The authors consider for the study a complete rod of circular cross-section of radius R, of limited
length L. Studied body is under the influence of a heat flow q from the surface over the entire cross-sectional
area of the left end, and heat exchange with the environment occurs on the cross-sectional area of the right
end. The rod is thermally insulated along the side surface. The authors consider two cases: the first is the heat
flow with intensity q can be set on the area of a small circle with radius r <R, the second is the heat flow can

2
be set on its part, that is, on the area TE(E] . During the study, the authors showed that during the

thermomechanical process, the strength of each section of the load-bearing structural elements is significantly
influenced by the temperature distribution field. The influence of high temperature on the morphology of
heat-resistant alloys is also shown. This leads to the fact that in some parts of the structural elements the
temperature will be acceptable, and in some — critical. As a result, rapid wear of structural elements and loss
of their physical qualities occur. Therefore, mathematical modeling of temperature distribution field for a
body of various configurations is an urgent problem. The article presents a method for constructing a
mathematical model and a corresponding computational algorithm that allows solving a class of problems to
determine the regularities of the temperature distribution field in the elements of rod-shaped structures. To do
this, the authors used the energy-variation principle in combination with the finite element method.

Keywords: mathematical model, complete rod, heat flow, cross-section, functional, heat exchange, thermal
insulation, temperature distribution field.

Introduction

The methodology for building a mathematical model and the problem of developing a heat propagation
process in one-dimensional and multi-dimensional structural elements of complex configuration, made of
heat-resistant alloys is important and relevant.

There are many works devoted to the problem of the effect of thermomechanical process on changing
the structure and composition of the material of any technical unit or structure. From this we can distinguish
the following authors: Segerlind L., Nozdrev V.F., Kudaykulov A.K., Pisarenko G.S., Birger I.A., Panovko
Y.G., Khimushin F.F., Zenkevich O., Critch F., Federov Y.A., Bakulin V.N., Afanasyeva V.V., Oleynikov
A.l., Jordar A., Yakobi A.l. and others. Analyzing the above-mentioned works we encounter some shortcom-
ings. These works take into account influence on body temperature distribution of separate external factors:
either heat insulation, or heat exchange with environment, or heat flow or temperature, etc. Here we devel-
oped a mathematical model of an insulated rod of constant cross-section under the influence of heat flow and
heat exchange with the environment.

A mathematical model of the temperature distribution field of a rod of different configuration in the
simultaneous presence of heat flow, thermal insulation and heat exchange using minimization of the total
heat energy functional can be successfully applied to solve many scientific and applied problems. Basically,
such problems are encountered in the intensive development of modern technological processes in the field
of metal science. The obtained scientific results are confirmed by solving real test problems, which confirms
the high degree of theoretical and practical importance of the topic.

The objects of the research are load-bearing structural elements in the form of a complete rod made of
heat-resistant alloys.

Subject. A full rod of limited length, constant cross-section, completely insulated along the side surface,
a heat flow is set on the small circle cross-sectional area of the left end, and heat exchange to the
environment takes place through the cross-sectional area of the right end.
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The aim and objectives of this paper are to investigate the temperature field distribution based on the
application of the energy principle using finite elements.

The paper presents a method of heat transfer in one-dimensional bodies, with the problem of
temperature distribution over the volume of bodies of various configurations made of heat-resistant alloys
formalized and solved based on minimization of the total heat energy. Numerical solutions of test problems
of steady-state thermal conductivity for one-dimensional structural elements are new approaches for
establishing a pattern of temperature field distribution.

By changing some parameters of the structure of structural elements, such as the radius of the rod cross
section, it will be possible to identify all vulnerable places in the structural elements and protect them from
deformation or fracture. Such predictions and hypotheses greatly reduce the detection of critical temperatures
throughout the body. Therefore, theoretical mathematical modeling of temperature distribution over the
volume of bodies of different configuration can be implemented to solve problems of optimization of
operation modes of main technological units, turbine units and internal combustion engines.

Research methodology

It is known from the general course of thermophysics that the established process of heat distribution in
one-dimensional structural elements is described by the differential equation of the quasi-harmonic form of
the parabolic type [1]:
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where the following boundary conditions take place:
_ Bt
h=6 [—(sz °c)]' on Sy,

T = Ts(2)
Bt
h=6 [—(sz °C)]' on Sy, (3)
Here isK, — is the heat transfer coefficient of the rod material, the dimension of which is [ w }
em-° C
[(C:_oc)]; Q — internal heat source, the dimension of which is { W }[%] T,. — ambient surface

temperature S, , the dimensionality of which is [‘C];T; — surface temperature S,, which is considered to be a
given and the dimension of which[‘C]; £, — the guide cosines of the considered cross-sectional surface of

the rod; g— a given heat flux on a certain surface of the rod, the dimensionality of which is {Wz} C%] In
cm

addition, if the heat flux is brought to some surface of the rod, it is taken with a minus sign, and if it is

removed from the rod, it is taken with a plus sign; h— is the value of the coefficient of heat exchange of the

cm?° ¢
surrounded by water, soil, sand, ice, etc. In each case, the values of the heat transfer coefficient of the rod
with its environment will be different.

Here it should be noted that the boundary condition (3) cannot simultaneously set q and h. If g is given
on some surface of the rod, then on that surface the value of h will be zero, and vice versa, i.e. where h is
given, then there the value of g=0.

It is known from the course of calculus of variations that the solution of equation (1), which satisfies
boundary conditions (2) and (3) gives a minimum of the following functional:

rod with its environment, the dimensionality of which is {L} [C%] Certain parts of the rod can be

2
_it ay) M1 )? 4)
I_\ﬁlexx(axj 2QT}dV+£‘:qT+2(T Tat) }ds.

Then if we find a function T =T (x), which will give a minimum to the functional (4), then it is a
solution of equation (1) and will simultaneously satisfy boundary conditions (2) and (3).
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This classical theory is applied to a particular applied problem. Consider a complete rod of bounded
length L and divide it into n—1 parts. In this case we have n nodes. Next, for each individual finite element,
taking into account the real conditions, let us write down the functional expressions for each finite element in

detail | ol [2-6]. Let's compose the sum of the functionals

=5, ©

Minimizing the I- functional by the temperature nodal values, we obtain the following solving system
of algebraic equations:

ol

6T1

ol

at, (6)

ol

Ty
Here it should be noted that when integrating over the volume and surface integrals in the expression of
the functionals 1, 1,, ..., | ,_; there are a lot of peculiar problems connected with specificity of structural

elements such as full and gentle rods, variable cross-section, presence of internal cavities in some elements,
presence of heat flows on local surface of elements of internal sources, and also given temperature values in
some nodes. Depending on these data, the number of algebraic equations in system (6) may be less than n.
Therefore, we will show these features on each specific example with corresponding physical and
mathematical comments. In doing so, we will proceed from the real formulation of problems regardless of
their complexity in the sense of physical and mathematical formulation.

Results and Discussion

In order to test this theory, consider a complete rod of limited length L, the cross section of which is a
circle with radius R. This rod is completely insulated along its lateral surface. On the full cross-sectional area
of the left end a heat flux of intensity g is given (though the heat flux can be given on the area of a small
circle of radius r < R). On the cross-sectional area of the right end there is a heat transfer to the environment
(heat transfer can take place on a small area). In this case, the values of the heat transfer coefficient denote
by h, and the values of the ambient temperature denote by T, (Fig. 1) [1, 7-11].

Thermalinsulation

A
—
y

Figurel. Thermally insulated full rod
For convenience, we first discretize the rod in question using three finite elements of equal length
! = g (Fig. 2). This will allow us to perform all calculations manually. It should be noted here that it is not
necessary to discretize the rod with the same element lengths. The length of each element can be different,

iel, =0, #l, etc.
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Figure 2 .Three discrete finite elements.
In the considered problem there is no internal heat source, i.e.Q=0. For the 1st finite element the
expression of the form function is as follows

X2—X

(01()() =
g

X=X

whenx, <X<X,; x —x =
. 1 2’ % 1

) (x) =

1)
The temperature values at any point within the length of the first finite element are determined by the
temperature values of the nodes T, and T, according to the formula

X X=X
1

+ T
1 1
Then the functional expression for the first finite element is as follows [1, 2, 12-16]:

2

1 ot

TS, —j dV + | qTyds,
v 2 ox S,

— X
2
T

T =g (0T, + 0, ()T, = ) (7)

where K g() — is the value of the heat transfer coefficient of the material of the first finite element, S, is
the cross-sectional area of the left end of the rod, which corresponds to the first node. This functional takes
into account the presence of heat flow with intensity g on the cross-sectional area Sl, which corresponds to
the first node. From (7) we define the expression for the temperature gradient within the length of the first
finite element

d_T: d(pl(X)T1+ d¢2(X)T T2 Tl.

5=

dx dx dx ‘y
Then the expression for |, it has the following form
2
- D) @ x
1 0 T2-" K A 72 2

I, = [ | K| —— dV+IqT1dS=—2J(T2—T1) dx +qTy A =

v(® 2 ‘y 51 204 X

DA ,
204

where A =S, is the cross-sectional area of the left end of the rod, where the heat flux with intensity g, A(l)f
is applied, are the values of the cross-sectional area of the first finite element. Thus, for the first finite ele-
ment we have:

D A® ,
= (1, - T +qT A, )

261

Iy
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T,, T, are the nodal temperature values at nodes 1 and 2, respectively. Similarly, let us write the functional

expression for the second (inner) finite element:
2

(ot (2,0
IZZV(Z)E k2 3€_22 dV:"’Z(T(T3—T2)2 , )

But, for the third finite element, the functional expression |3 must be written taking into account the

heat exchange process of the rod with the environment through the cross-sectional area of the right end of the
rod. Where are the values of the heat transfer coefficient h, and the ambient temperature T,;. Then

2
1l @) Ta~Ts h 2
I, = - K E— dv —\T-T ds,
3 V(I3)2 xx[ 3 J +SJ42( at)

where S 4— S the cross-sectional area of the right end of the rod, which corresponds to the fourth node, and

along which there is heat exchange with the environment. After integrating the expression |3we have:

(3,8

Iy = XX—(T 4T3
21,

2 hA4 )
) + _( 4 _Tat) ’
2
(10)
where A, = 34. Thus, for the considered rod, taking into account the specificity and formulation of the

problem, the full expression of the functional will be:

| = I1 + I2 + I3=
1) A 12),) 3,6l
KXZXIA (r,-1,f +arA +—KX2XIA (r,-7,f + KXZXIA (r,-7,f +h%(T4 1 f
1 2 3

Then minimizing the functional | over the nodal values of temperature T, , T2 , T3 u |, and obtain the

following basic system of solving algebraic equations with respect to the desired nodal values of
temperature:

al K(l)A(l)
—=0=>-—2—(T,-T,)+0qA =0
T, I, 2
ol KYAY K2A®
ﬁszli(Tz _Tl)_li(Ts _T2)=0 (11)
2 1 2
ol K2A® KOA®
—=0= (Ts _Tz)_ (T4 _Ts):O
aT, l, 1,
ol KOAR
a?=0:>|7(T4 ~T,)+hA, (T, -T,)=0
4 3

In order to obtain numerical results, let us set specific application problems for the parameters in the
system (15). Assume that the considered rod is homogeneous and of constant cross-section. Then for the
numerical solution we assume the following initial data [1, 2, 17-22]:

w
Kl k2 k@ =100Lm0c} 1 =1, =1, :%:%:5[cm]; R = 2[om]

A=A =AY = A? = AB = 7R? — 47]cm?]
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T

Values of the coefficient of heat exchange with the environment h=6h = 6 [ﬁ]pf the available
heat flow (supply flow) g=-180 q = -180 [;H—TZ],ambient temperatures of the cross section of the right end

(4th node) T :16["C]Tat =16 [ °C]. Now using the system of equations (11) we find the temperature

values at nodes 1,2, 3and 4,ie. T;, T,, T, u T,
Based on the initial data we have:
Kyx -A 10047z
¢ 5

The obtained numerical data are substituted into the system of equations (11) and we obtain the
following system of algebraic equations, relative to the temperature nodal values:

~807(T, —T;) - 7207 =0,

=807,0 A =-180- 47 =-7207, h-Ay Ty =6-47-16=3847

< 807r(T2 - Tl) - 807r(T3 - T2) =0,

807(Ty —T,) - 807 (T, —T,) =0,

807 (T, —Ty) + 247 (T, —16) =0,

By opening the brackets and reducing both parts of the equations, after slight simplifications, we obtain
the following final solving system of algebraic equations:

80T1 - 8OT2 =720
— 80T, +160T, —80T, =0
I 2 3 (12)
- 80T2 + 160T3 - 80T 4= 0
- 80T3 +104T 4= 384
From the first equation of the original system (12) we have:
80T, =80T, +720=T, =T, +9. (13)
Substituting 80T1, into the second equation of the system (12) we find that
T, =Ty +9 (14)

Substituting the found value T2 into the third equation of the system (12) we obtain that

Ty=T, +9 (15)

Finally, substituting the found values into the last equation of the system (12) we find that

80T4 - 80T4 - 720 + 24T4 = 384 . From this we get that

24T, =384+ 720 = T, =%:46 C.

Substituting the value T, into equation (15) we find the temperature in the inner 3rd node

4

T3=T4+9:46+9:55 c.

Substituting T, into equation (14) let's find the temperature in the inner second node

T, =T3+9=55+9=64 °C.
Finally, by substituting the value of T into equation (13), we find the temperature value in the 1st node
on the cross-sectional area of which the heat flux of intensity is given g=-180 q = -180 [C%]

T1:T2+9:64+9:73 C.

Here we consider the first case, which heat flux intensity g is given on the area of a small circle of a rod
with radius r<R.
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Now consider the second case, when the heat flux with intensity q is applied not to the full area of the

2
R
left end, but to a part of it, that is, to the area 72'(_] (Fig. 3) [1-6, 22-23]:
2

Thermal insulation

h, Ty

\ 4

Heat exchange < L
Figure 3. Calculation scheme

At the same time on the remaining cross-sectional area of the left end, i.e. on the
2 (RY 3R’ o men(B) =3 cothere s a h h ith the envi hi=6h =
R _;{j _om 2 mRE-m (E) =—— cm there is a heat exchange with the environment h;=6 h =
2 4
Bt _ Bt . . . ° 3 0
[—(sz °C)]'h1 =6 [—(sz. °c>]’ there is a heat exchange with the environment Tatl =20°C, Ty =16 C.

The area to which the heat flow is brought

— Br d b R2 ”R4 2
q=-180 [m] enote ySllzﬂ- E :Tcm .

Then we denote the remaining cross-sectional areas of the left end of the rod by

2

R 3R 2 2 _

Sip = 7zR2 - ﬂ(—) = cm2.512 = nRZ-“TR = % cm? Over the total area of the right end of the
2 4

rod there is a heat exchange with the environment h=6h = 6 [(CmBTTC)] As in the previous problem, we

discretize the rod in question with length L, using three finite elements lengths of which are respectively

L
ly=ly=lg=— (Fig. 2). Then in the considered problem for the first finite element the expression of the

functional |, instead of (8) will be as follows:
2

2
1 T, -T. h
=1= kU272 ] gy o g qT Sy, + | —1[T—Ta ) ds,, =
12 | S S, 2 b
i 1 11 12
NG 2
—Ki")‘—A(T 1, +qTs St
- 271 T 17 ay )
21, 2
Thus, for the first finite element we have
<Ea® ( ) hySio ’
= Ty S amysyy (T Ty )
1

We leave the functionals for the remaining elements (2-3) the same as (9) and (10):

2
=] : K@(Mj dV:M(T3 —TZ)Z;
212 I, 21,
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1 .0)Ta"Ts 2 h S 2 hay 2
Iy = [ = K| — dV+f—(T—Tat)2dS= (T4 —T3) +—(T4 _Tat)-
[3]2 I3 S2 2I3 2
Vv
The general expressitzr)] of the functional for the full rod is as follows 2. )
1) .1 2 2),(2
A 2 h,S Ko A 2
XX 1712 XX
I:I1+I2+I3: o (TZ_Tl) +qT1811+—2 (Tl—Tatl) +—2I (T3—T2) +
6,9 : 2 =
3) .13
K sl A 2 hA, 2
+ Y (T4—T3) +T(T4 —Tat) .
3

Now minimize the obtained functional 1 (16) by the nodal values of temperature T,, T, T3 u T4 and
obtain the following solving system of algebraic equations:

) A0)
LRSS ¥ G (TZ—T1)+q511+h1512[T1—Ta j=o
an, N 4
) A0 (2) ,(2)
al Ky A Kol A
P XT (Tz ‘Tl)‘ X)l( (Ts ‘T2)= 0 (17)
2 1 2
2) 52) NS
ol Ky A ( ) Kyx A ( )
— = T, -T, )- T,-T,)=0
372 473
oT, 1 I
3] A3)
;% =0= %(T4 —T3)+ hA4(T4 —Tat): 0.
4 3
4r 3r-4
Calculating the wvalues at R=2 cm. We have Sll = 7 =r ; 812 = 2 = 3r;

h -812 =6-37 =18x; h-A4 =6 -4 = 24r.
Substituting the coefficients into the system of equations (17) we obtain
- 807r(T2 - Tl) —1807 + 187z(Tl - 20) =0,

< 807r(T2 - Tl) - 807r(T3 - T2) =0,
807z(T3 - T2) - 807z(T4 - T3) =0,

807r(T4 - T3) + 247z(T4 -16) = 0.
Reducing all terms of the equation by and after a slight simplification we have:

98T, — 80T, =540,
— 80T, +160T, — 80T, =0,
) 1 2 3 (18)
— 80T, + 160T3 - 80T, =0,
—80T5 +104T, =384
From the first equation of the original system:
270 40
T=—t+—T,, (19)
49 49

Substituting the found value T, into the second equation of the system (18) we obtain that
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T2=@+4—9-T3 (20)
58 58 .

Substituting the found T, in the third equation of the system (18) we find

T3=@+5—8-T4 (21)
67 67

Substituting the obtained value T3 into the last equation of the system (18), we find the temperature

value of the 4th node, which corresponds to the cross-sectional surface of the right end of the full rod, where
the heat exchange takes place:

270 58
—-80 —+—-T4 +104T4=384.

67 67
From this we have
47328 o
T, = ~20.33 C,
2328
then substituting T4 in (21) we obtain the temperature values in the 3-node.
270 58 o
T3 =—+—-20.33~2163 C.
67 67
From (20) the value T, will be:
270 49 °
Ty=—++-—-2163~2293 C.
58 58

From (19) we find the temperature value of the first node, which corresponds to the cross section of the
left end of the rod, where part of the area is subjected to heat flow and the right part is subjected to heat
exchange:

270 40 o
T1:—+—-22.93z24.23 C.
49 49

Conclusions

It should be noted that three types of boundary conditions have been set in this problem:

1) The surface of the cross-sectional area of the left end of the full rod is given a heat flux and two cases
are considered:

a) a given heat flux of intensity ¢ can be set on the area of a small circle of radius r<R;

2
R
b) the heat flux can be set on its part, i.e. on the area 7[(_] :
2

2) The lateral surface area along the entire length of the rod is insulated.
The cross-sectional area of the right end is open. It is surrounded by some medium (water, oil, ground,

etc.), temperature of which is T, =16 °C. Values of the coefficient of heat exchange of the rod with this

environment h=6 h = 6 [%] heat transfer coefficienth = 6 [%] and the coefficient of heat
(cm? °C) (cm? °C)

exchange of the rod with the environment T, =16°C is determined experimentally and in all problems

considered by us are considered to be set. Values of heat flux and internal heat source are also set.
As a result, the initial data for both cases are the same, but for the first case, when the heat flux is set on

the area of a small circle of radius r<R the temperature values at the nodal points are as follows: T = 73°C,

T,=64C, T,=55C, T, =46 CT; =73 C.
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2
Now for the second case, when the heat flux is set on its part, that is, on the area z| — | the
2

=2293°C, T,=2163"C,

temperature values at the nodal points are as follows: T, =24.23°C, T 3

1 2

T, = 20.33°Cc T, =73°C.

On the basis of the above-stated, practical significance of the conducted research can be determined.
The proposed computational algorithm can be used to determine the regularities of the temperature distribu-
tion field in rod-type structural elements. Furthermore, the presented method of transferring heat to one-
dimensional bodies based on minimizing integral thermal energy allows formalizing and solving the prob-
lems of temperature distribution over the volume of bodies of various configurations made of heat-resistant
alloys.
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KeJsneneH KUMachl TYPAKTHI OIPTYTAC CHIPBIKTHIH Y3bIHA 00 bIHA
JKBLIY TapaJjly epiciH WIEeKTI dJIeMeHTTep daiciMeH miliHaey

Makanana D148 xpityra Te3iMIi KyiiMajaH jKacaifaH CHIPBIKTHIH Y3bIHA OOWBI XKBUTY Tapaly epiCiHiH 3aH-
IBUTBIFBIH aHBIKTAY HET13/I€NTeH. ABTOPJIAp Y3BIHIBIFBI NIEKTEYi L-Te TeH, y3bIHa OOWBI KOJIeHEH KIMaa-
PBIHBIH paguycTapbl R-re TeH neHrenek 0ipTyTac ChIPBIKTHI KapacThIpFaH. 3epTTeyre allbIHFaH JIEHEHIH COJl
JKaK KeJJICHEeH KUMAChIHBIH TOJIBIK OCTiHIH aylaHbIHA ( JKbUTY aFbIHBI TYCIPUITeH, ajl O JKaK KeJJICHEeH KuMa-
CBHIHBIH ayaHBIHAH KOpPILIaFaH OPTaMEH JKbUTY alMacy sKypil >kaTelp. CHIPBIKTHIH OyHip OCTiHIH aymaHBI KbI-
JMyJaH OKIIayJdaHFaH. Makaja aBTOpiaphl €Ki KaFaaiiiel KapacThIpFaH: OipiHIIICI — KBUTY aFbIHBI ( KapKbI-
HBIMCH COJI JKaK ayJaHbIHbIH <R pamuychIMeH OepireH KilllKeHTal NOHTeNeK aylaHblH; eKiHIIICI — KUY

2
aFbIHBI COJI JKaK OCTiHIH ayTaHBIHBIH Oenrini Oip OemiriHe OepisireH, sSIFHH n[— ayIaHBIH. 3epTTey KopceT-
2

KeH/IeH, KbUTyMEXaHUKAIBIK MPOLECTe HETi3r1 KYPBUIFBI JIEMEHTTEPiHIH op O6JiriHIeri bICTHIKKA TO3IMIi-
JIKKE JKBUTY Tapally epiciHiH ocepi MaHpIB Oonansl. COHBIMEH Katap, KOFaphl TEMIEpaTrypa bICTHIKKA TO-
3iMIi KyiiManapIsiH MOP(OJIOTHACHIHA dcep ETETiHMAIr 3epTTeireH. byl KypbUIFbI 3JIeMEHTTEpiHiH Kehoip
GeutikTepiH/ie XKBUTY OTIMII, an Keibip OenikTepiHae KPUTHKAJIBIK JKaFaaiiFa skeTeTiHairin kepcereni. OChIH-
nail KyOBUIBICTApABIH HOTIDKECIHIIE KYPBUIBIMABIK JIEMEHTTEp jKapaMChl3 KyHre (KHpayra) Te3 YIIbIpaiibl
XKoHe (U3MKAIBIK KacueTTepiH jkorantaabl. COHIBIKTaH ap TYpii (opMasiarsl JeHe YIIiH TeMIepaTypaHbIH
Tapaiy epiciH MaTeMaTHKAJIBIK MOIeNbAey (MilIiHaey) 63eKTi Mocene. Makanaa ChIpbIK Topi3aec KYphUIbIM-
IIBIK SJIEMEHTTEP/ET JKBUTy Tapally OpiCiHiH 3aHABUTBIKTAPBIH aHBIKTAYy OAFBITBHIHIA €CENTep IIBIFapy YLIIH
MaTeMaTUKAJIBIK MOAETbBI (MIIiHAL) KYpY dAicTEMEC] )KoHE COHKECTI ecenTey alropTMaepi KentipiireH. by
YIIiH aBTOpJIap YHEPTeTUKAIBIK-BapHUAIMSIIBIK IPHHIAIT HETi31HAE MEKTi AIEMEHTTEp 9IiCiH KOJIIAH IBL.

Kinm co30ep: MaTeMaTHKaIBIK MOAENb (TIIiH) OipTyTac CHIPBIK, JKBUTY aFbIHBI, KOJIJCHEH KUMa, (PYHKIHO-
HaJl, XbIJTy ajIMacy, KbITyJaH OKLIayJay, KbULy Tapay epici.
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KoHeuHO0-3/IeMeHTHOE MOJIeJIMPOBAHHE PACIIPOCTPAHEHUS Teljia
MOJTHOTO CTEP KHS MOCTOSTHHOTO MOTEPEeYHOr0 CedeHUst

B craTtbe BBemeHO ompeneneHHe MONS pPACIpENENICHUs] TEMIIEpaTyphl ULl CTEpKHS, M3TOTOBICHHOTO W3
JKaporpodHoro cruiaBa DM48. ABTopaMu A UCCieNOBaHHUS BBIOpAH IOJHBINH CTEP)KEHb KPYrOBOTO IOTIE-
pedHoro cedeHus paaumyca R orpanmdeHnoi umHEL L. M3ydaemoe Temo HaXOAMTCS O] BO3JEHCTBUEM TeTI-
JIOBOTO TIOTOKA ( CO CTOPOHBI IIOBEPXHOCTH MO BCEH IUIOIMIAIY ITONIEPEYHOTO CEUCHUs JICBOTO KOHIIA, a Ha
IJIOIIAY TOIEPEYHOro CEYEHHs IIPAaBOr0 KOHI[A IPOMCXOTUT TEIJIOOOMEH C OKpYJXKalolled cpenoi.
CrepxeHb TeIION30JHPOBaH M0 OOKOBOM MOBepXxHOCTH. M3ydeHs! ABa ciaydasi: MepBbIi — TEIIOBOH MOTOK
MHTCHCHBHOCTBIO (] MOXKeT OBITh 3aJaH Ha IUIOIIAJX Majoro Kpyra paguycoM r<R; BTOpoil — TemioBoii

2
ITIOTOK MOKET OBITH 3aJJaH Ha €€ 4aCTH, TO €CTh Ha ILIOIaaun TC(— . HpI/I HCCICNA0OBAHUHN aBTOPAMMU IMOKa3a-
2
HO, 4YTO IIpU TEPMOMEXAaHHUYCCKOM IPOLECCE€ Ha MPOYHOCTb KAKAOI'0 YJaCTKa HECYIIUX DJIEMEHTOB KOH-

CTPYKLUU CYLIECTBEHHOE BIMSHUE OKa3bIBACT IOJIC PaclIpelelleHus TeMIepaTyphl. Takke OTMEUeHO BIUs-
HHE BBICOKOIT TemIepaTypbl Ha MOP()OJIOTHIO JKAPOIPOUHBIX CIUTABOB. DTO MPHUBOJUT K TOMY, YTO Ha KaKHX-

BecTHuk KaparaHgmMHCKOro yHusepcureTa
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TO yYacTKaX 3JIEMEHTOB KOHCTPYKIHM TeMIlepaTypa OyaeT AOMyCTHMOH, a Ha KaKUX-TO — KPUTHYECKOMH.
Bcneactsue 3Toro nmpoucXoauT ObICTPOE W3HAIIMBAHUE IEMEHTOB KOHCTPYKLHMM M NMOTEPs MX (PU3MYECKUX
kauecTB. IloaToMy MaTemaTHueckoe MOAEIHUPOBAHUE PACTIPEAEIEHHS MO TeMIIepaTyphl Il Tela pasind-
HOH KOH(HUTypaIy ABISETCS aKTyaIbHOH IpoOiieMoil. B craThe mpuBeseHa MeToJuKa OCTPOCHHS MaTeMa-
TUYECKON MOJIENIU U COOTBETCTBYIOIIETO BBIUMCIUTEIBHOIO aIrOPUTMa, IO3BOJIAIOIIUX pellaTh KIacc 3aaad
IO OIPE/ICNICHUIO 3aKOHOMEPHOCTEH OIS PacIpesieNieHHs TeMIIEpaTyp B 2IEMEHTaX KOHCTPYKIMH CTep KHe-
BOro BHJA. [y 3TOro aBTOpHI HCIOIb30BAIU YHEPIeTUYECKO-BaPUAIIIOHHBINA IPUHIUII B COYETAHUU METOJa
KOHEUHBIX JIEMEHTOB.

Kniouesvie cnosa: matemarHmuyeckas MOJENb, MONHBII CTEp)KeHb, TEIUIOBOH MOTOK, MONEPEYHOE CEUeHHE,
(bYHKIMOHAN, TETUIO0OMEH, TEIUIOM30JILNS, [OJIE PACHPECIICHHS TeMIIePaTypBl.
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