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Integral characteristics of induction loop located overthin conducting layer

In the general form, the integral principle of electromagnetic soundings was developed, based on an analysis
of generalized regularities of electromagnetic fields in the Earth, as spatial electric circuits. The mentioned
approach determines the basic contours of a possible new direction in the development of applied
electrometry. The problem of the dynamic interaction of an ungrounded loop, that is powered by a harmonic
current, with a thin conducting bed, was solved. Analytic relationships that describe the dynamic increments
of the active resistance and loop inductance as a function of frequency were obtained as a result of solving
this problem. The asymptotic analysis of the obtained relations in the intervals of asymptotically low and high
frequencies was performed, and on the basis of received results algorithms for interpreting the experimental
frequency dependences of integral characteristics of the induction loop were developed. The performed fun-
damental developments were tested on experimental data of laboratory measurements of the frequency de-
pendences of the increment of the active resistance and inductance of loops located above the conducting bed
and on its surface. A full confirmation of the theoretical developments and in formativeness of the integral
parameters of induction loops was obtained.
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conductive layer, magnetic flux, frequency, integrated characteristics, electromagnetic sounding.

Classical modifications of induction sounding of the Earth's subsurface [1-3] are based on the experi-
mental studying of time and frequency characteristics of electric and magnetic field strengths of excitation
sources at different points on the Earth's surface. Consequently, both in the observational system and in the
physical nature of the initial information characteristics, these modifications are differential. They are com-
pletely inherited from geometric sounding at a constant current where the differential research system is the
only possible, and correspond to classical principles of electrical exploration. However, in alternating elec-
tromagnetic fields studying differential characteristics of the field (force) is by no means the only way to
study subsurface electrical profiles.

As a new direction in electrical exploration with alternating currents, it is proposed to use the new prin-
ciple for applied electrometry is the study of the electrical properties of geoelectrical sections, called integral.

From the point of view of classical principles of electrical exploration, the «ideal» option that has a
maximum information contentof electromagnetic sounding would be achieved if it were possible to observe
simultaneously two horizontal components of the electric field (£,, E,) and three components of the magnetic
field (H,, H,, H.) on a set of points on the Earth's surface in the vicinity of the excitation source. Since it is
technically difficult to implement such observations (it is practically impossible), we can confine to their
cumulative result that is defined as the flow of electromagnetic energy through the surface of a spatial con-
ductor. Mathematically such a problem is reduced to determining the stream of the Pointing vector

(P:j[ExH]dS).

According to the well-known Umov-Pointing theorem [4, 5], the energy flux, for the case of a quasi-
stationary approximation, increases with increasing current in the source on the increase in the energy of the
magnetic field and on the Joule losses in the conducting medium. As the current in the source decreases, a
part of energy of the magnetic field, with the exception of the necessary Joule losses, returns back to the
source. Naturally, the Joule loss in the earth has the greatest dependence on the structure of the subsurface
electric profile, and their dynamic dependence on the rate of changing the field can be accepted as an infor-
mation parameter. Experimental determining of this parameter can be carried out in a rather simple way, in
particular, by studying the dynamic interaction of the source and the conducting half-space. Thus, in princi-
ple, it is possible to perform electromagnetic sounding based on an observation system that excludes special
receivers.Induction loops and grounded lines can be used as field excitation sources. The method can be im-
plemented in a harmonic mode and in a transient mode. A modification based on the use of induction loops
in a harmonic mode can be called integral induction sounding.
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The purpose of this article is on the basis of a rigorous solution of the electrodynamic problem of the
harmonic magnetic field of a circular induction loop, located above a thin conducting layer, to consider the
basic principles of integral induction sounding, to investigate their informativeness and to confirm the possi-
bility of their practical realization by physical modeling.

1. Electromagnetic field of a circular loop over a thin conducting layer

A thin conducting layer is a simple model of a conducting medium, for which relatively simple solu-
tions can be obtained. It is known from the classical theory of electrical exploration that such a model can
reflect the basic anomalous regularities of electromagnetic fields caused by real subsurface electric profiles
in the low-frequency range when the field extends to a considerable depth and its structure is determined
mainly by the generalized parameters of the profile. Therefore, such a model is of great importance for
studying the basic regularities of the method and makes it possible to obtain simple working formulas for the
analysis of experimental data.

Integral characteristics of the induction loop can be simply expressed if their quasi-stationary electro-
magnetic field is known. Therefore we consider the problem in general.

A circular one-turn induction loop of » radius made of a thin cable of »y<<r radius is located at the /
height over a thin conducting layer (Fig. 1) that has a vanishingly small thickness A4#—0 and longitudinal

conductivity S = leo (Ah -y) (v is specific conductivity of the layer). Magnetic permeability of the layer u

and the surrounding insulator is equal to the magnetic permeability of the vacuum: p = 4n-107 HN / m. The
loop is excited by the harmonic current I(f)=Ie"“(lis the amplitude value of the current, o is the circular ex-
citation frequency,  is the time, i = V-1 1 is the imaginary unit). The initial phase of the exciting current is
selected in such a way that for ®—0 the direct current flows clockwise. There should be determined: the

magnetic field A at any point in space; the surface density of the induced eddy current i at any point of the
conducting layer; caused by eddy current losses frequency-dependent increments of the active resistance
AR(w)and inductance AL(w)with respect to the steady-state mode (inserted resistance and inductance).

Because of the axial symmetry of the problem, its solution is performed in a cylindrical coordinate sys-
tem (R,9,z) with the origin at the center of the loop and the z axis directed vertically downward (Fig. 1). The
conductive layer divides the space into two half-spaces: the upper half (1), where the source is located, and
the lower half (2). The problem is solved in quasi-stationary approximation.
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Figure 1. Induction loop over a thin layer

The resulting magnetic field H is represented as a superposition of the frequency-independent primary
field HO(R,Z) and the frequency-dependent secondary field Ha(R,Z,(D) of eddy currents that cause the ab-
normality from the conducting layer:

H,(R,z)=H,(R,z)+ H (R, z,0). (1)

Quasi-stationary magnetic field in the insulator where there are no currents of conductivity is potential
and can be easily determined via the scalar potential U in the expression

H =—gradU . ()
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The scalar potential of magnetic field satisfies the Laplace axisymmetric equation

2
L0pU), 2, 5
ROR\ OR Oz

that is true for the upper and lower half-spaces (U, and U,) excepting the points of the conducting layer and
the cable. This equation is also satisfied by both primary and secondary and thus the resulting fields.

The problem is solved when observing certain boundary conditions on the thin conducting layer. Pro-
ceeding from the Biot-Savart’s law for surface currents there is established the following boundary condition
for tangential components of the magnetic field vector [4]:

Roti =[iix(d,-A)]=1 (4)

where RotH is the surface rotor of the magnetic field vector; 7 is the normal ort to the layer surface;
H I H , are magnetic fields from the different sides of the conducting layer; i in the current surface density
of the conducting layer (A/m). Since in the considered case the vector of the current surface density will be
presented only by the azimuth component (i = i‘bdﬁ)0 ), the scalar shape of the boundary condition (4) will have

the form
HY -HY =i,. (42)

The second boundary condition is the continuity of the normal components of the magnetic field
([H.]=0) upon transiting through the conducting layer, since by the condition of the problem its magnetic
permeability does not differ from permeability of the surrounding medium.

The third boundary condition on the thin conducting layer is the Scheinman-Price condition [4] which is
represented in the following form

oH®  oH
Oz Oz

where k =./iouS is the wave constant of the conducting layer.

= k2HUD) )

Since the considered electro-dynamic problem is solved via integrating the Laplace equation for the
magnetic fields potential (3), the mentioned boundary conditions on the surface of the conducting layer can
be rationally presented in the following convenient for using form

ou,| :aU2| : U _52U1| Ui, ; iy (R,0)=—+ %Y
oz e, ot OR OR

The finiteness and continuity of the potential functions U;(R,z) and U,(R,z) in the entire space and their
regularity in the infinity are taken as the limit conditions of the problem.

Concluding our consideration of the method for solving the problem, we point out physical simplifica-
tion which is due to the adopted model of a thin conducting layer. The very formulation of such a problem
neglects automatically the phenomenon of skin effect in the conducting medium and takes into account only
induced currents. Therefore practical applicability of the subsequent solutions is limited to such a frequency
range for which the thickness of the skin layer in the real section exceeds significantly the thickness of the
conductive deposits.

Axisymmetric integrals of the Laplace equation (3) damping in the infinity, with the condition (1) taken
into account, can be represented in the following form:

ou,

=k (6)

o=h Oz z=h

z=h z=h

U,(R,2,0) =Uy(R,2) + [ A(m,0)e™ Jo(mR)dm  npu z <h;
0

. (7
U,(R,2,0) = Uy(R,2)+ [ B(m,w)e™"J(mR)Ydm ~ nipnz > h.
0
The first summands in expressions (7) represent the primary magnetic field of the loop, the second ones
the field of the eddy currents induced in the conducting layer. As for the primary magnetic field, to obtain it

we need to consider the solution of an individual problem which we omit in this paper but give only the final
result:
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Uy(R,z)=7F %Te_’”le (mr)J,(mR)dm (8)
0

6 9

where J,, J; are Bessel’s functions. The sign in this expression is used at z<0, a “+” at z>0.

In order to obtain explicit solutions, it is necessary to determine the unknown functions A(m,®) and
B(m,w) that appear as a result of integrating the Laplace equation. This can be done by satisfying the first
and the second boundary conditions (6), taking into account, moreover, expression (8) for the primary field.
As a result we obtain integral expressions for the scalar potential of the magnetic field in an explicit form in
the form of a superposition of the primary and secondary fields

Irk2 o0 e—m(Zh—z)
s

Ui(R,2,0) =Uy(R,2) == _([WJl(mr)Jo(mR)dm
] kZ 0 —mz : (9)
U, (R, z,0) =Uy(R.2) + = [ ———J, (mr) (mR)dm
o 2m—k;

From the result obtained it follows that in the case of high frequencies or an ideally conducting layer in
the upper half-space the field is represented as a superposition of the primary field of the true source and the
mirror image of the fictitious source with counter-phase excitation with respect to the plane of the layer. In
the lower half-space under these conditions the primary field is completely compensated by the secondary
field of eddy currents, that is the electromagnetic field does not penetrate into the lower half-space. Thus, at
high frequencies the reflecting and shielding properties of the conductive layer are sufficiently expressive.

According (2), the magnetic field via the scalar potential can be determined rather easily: H.=— oU/0z,
Hy=— 0U/OR. taking into account the third boundary condition (6), it is easily to determine the surface densi-
ty of the induced in the conducting layer eddy current that has only the azimuthal direction:

—mh
iy (Ro)|_ = % %, e
=h OR OR 2m—

The electric field on the surface of the conducting layer can be easily determined based on the Ohm’s
law for surface currents [4, 5]:

J,(mr)J,(mR)dm . (10)

00

_ 2
= Irk; I 5
z=h z=h 0 s

.
Ey(R.0) =iy(R0) .

Proceeding from the definition of the current surface density, in this simple case there can also be calcu-
lated the total force of the induced in the layer eddy current:

0 —mh

. e

I(0) = .([zq,(R,oo)dR = Irk> { WJ1 (mr)dm . (11)

The limiting case of the electromagnetic field of the induction loop is the vertical magnetic dipole field.

It is easy to be obtained on the basis of expression (9) if we set infinitely small dimensions of the loop (r—0)

and take into account the asymptotic representation of the Bessel function for the small (J,(mr)|,_q=mr/2).

Taking into account also the expression for the primary field (8) and performing its possible integration, for
the dipole source we obtain:

Iq z we—m(2h—z)
UR,z,0)=—+ —k? J,(mR)dm
1 ( ) 47'[ (R2+Zz)3/2 Y'([2m—kf 0( )d
- , (12)
Ig z Toer
U (R,z,m)=— +k? J,(mR)dm

where g=m/” is the source area.

The integrals in (12) for the particular case where the source and the observation point are on the sur-
face of the layer (A—0, z—0) can be represented via modified Bessel and Struve functions. A detailed analy-
sis of the electromagnetic field of a vertical magnetic dipole is contained in [6, 7]. Unfortunately, it is not
possible to represent the integrals of expression (9) in the form of elementary or special functions. Therefore,
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with the exception of asymptotic representations, the possibilities of their analytical investigation are limited
only by numerical integration.

We are particularly interested in the frequency-dependent vertical component of the secondary magnet-
ic field in the upper half-space where the source is located. Therefore, according to (2) and (9), we represent
it in this form:

H" (w)=

2 ® -m(2h-z)
_oU() _ Ik, [= J (mr)J,(mR)dm . (13)

oz 2 4 2m-k

0
Multiplying and dividing the numerator and the denominator of the integrand by the quantity conjugate to
the denominator, we separate the real and imaginary parts in the considered component:

H(w)=ReH"(0)+i ImH!" (o),

2 © —-m(2h-z)
ReH () =~ 21 [ 5=, (mr)J (mRYdm,
2 3 m+a
® 2 m(2h-z) (14)
Im A () = 22 [ (mr) ] (mR)dm,
25 m +a

where a=muS/2.

Thus, in the upper half-space, due to the induced eddy currents, the real component of the vertical mag-
netic field is weakened, and the imaginary component is amplified. Relations (14) will then be needed as ini-
tial values for obtaining the integral characteristics of the induction loop.

2. Integral characteristics of the induction loop.

The induction loop, as a source of the magnetic field, has its own inductance L. consisting of the exter-
nal static inductance L and the internal inductance of the cable L. L=L+L, from which it is made. Static and
internal inductances can be estimated from the formulas known in electrical engineering:

Lzuor[ln&—2j, L:“_l’
r, 8n

0
where py=4n-107 HN/m is the vacuum magnetic permeability; p is the cable magnetic permeability, / its
length. If the loop is multi-turn, the external inductance is determined by the linkage and the corresponding
formula must be multiplied by the square of the number of turns.

Determining the integral characteristics of the induction loop is connected with calculation of the mag-
netic flux through its circuit. Leaving aside the primary magnetic flux that determines static inductance of the
loop, as well as the internal magnetic flux determined by the internal inductance of the cable, let us study the
anomalous flux of the secondary field of eddy currents. At this we use expressions (14) as the initial rela-
tions, and representation of the magnetic flux @ in terms of the surface integral:

® = B,ds = 2nuj HY|_, RdR.
s 0

As a result for the real and imaginary components of the magnetic flux through the loop circuit we ob-
tain the following expressions:

0 —2mh © —2mh
Re®(w) = —Iquaz.[ 62 J(mr)dm, Im®(o)= Iquaj. mze 5
o m om +a

Thus, the secondary magnetic flux is composed of a negative real part and an imaginary positive part
which is physically conditioned by the so-called «demagnetizing action of eddy currentsy.

Now we can calculate the integral characteristics of the induction loop. To do this we use the Ohm's law
for a closed electrical circuit with successive switching active resistance R, and inductance L which corre-
sponds to the problem under consideration. Taking into account the time harmonic dependence of the field
(~e™), the Ohm's law can be represented in the following form:

)
V=I-Ra+%=l-Ra—ich,,
t

J Il (mr)dm . (15)

+a’

where I, V, @, are current, voltage values in the loop circuit and the total (primary and abnormal) mag-
netic flux through this circuit. Then the complex resistance Z of the induction loop considering that
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D=Dy + Re@(w)+ilmP(w) where @, is the magnetic flux of the primary magnetic field, will be determined

in the form:
Z:?:|:Ra+w%;((n):|_lw|:ll+w:|, (16)

where R,, L=®,/I is static resistance and static inductance of the loop.

Thus, the secondary magnetic flux determines the frequency dependent increments of the active re-
sistance and loop inductance (inserted resistance and inductance) which manifest themselves against the
background of its static parameters. Accordingly, the equation of the induction loop, as a closed electrical
circuit, can be represented in the following form:

14
Z==>= [R, + AR(w)]—io[ L+ AL(w)]. (17)

Taking into account (15) and (16) for dynamic increments of the active resistance AR and inductance

AL we will obtain the following expressions:

0 me*2mh 0 e*ZWh
AR(®) = gopa] T (nridm s AL(©) = ~qpa’ [ ———J} (mr)dm. (18)
0 0

If the loop is multi-turn, then the obtained formulas should be multiplied by the square of the number of
turns #° owing to the presence of mutual induction of the turns.

Thus, the increment of the active resistance AR(w) determines eddy current losses in the conducting
medium and is always positive. The increment in inductance AL(w)reflects physically the demagnetizing ef-
fect of eddy currents and is, consequently, negative. Frequency-dependent increments of the active resistance
and inductance of the field excitation source, as follows from (18), are informative parameters and, conse-
quently, can be accepted as new for electrical exploration of integrated sources of subsurface electric pro-
files.

Integrals (18) cannot unfortunately be expressed in terms of elementary or known special functions.
Therefore it is practically important to obtain their asymptotic representations for high and low frequencies.
Carrying out an estimate of these integrals for high-frequency asymptotics of a multi-turn loop, we obtain the
following formulas:

AR(o)|

W—>0

2 © 2
n 2mh 72 n h
=2qg— | me""J; (mr)ydm =— f' (—j;
S { : s \r as)
AL(®)

W—>0

T O
r
0

where 7 is the number of turns in the induction loop.
Function f{k) is expressed via complete elliptic integrals, and function f'(k) is determined via its deriv-

Ao too]

(M) Ak [ .
i (J_ = kr Kl_kzﬂJE(k) 2K(k)}, (20)

ative by the loop height 4:

where k=r/~r* +h* is the module of complete elliptic integrals of the first K(k) and the second E(k) type:
/2 /2
d

o
K= [ —9% E)= [ 1-#sin’ ada.
‘([\ll—kzsinzoc }[

The calculated plots of these functions in dependence on 4/ are shown in Figure 2.
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Figure 2. Plots of functions f{h/r) and f'(h/r)

Thus, high-frequency asymptotics of dynamic increments of the active resistance and inductance are in-
dependent on frequency which is due to the reflective properties of the conducting layer. High-frequency
asymptotics AR(m—) can be easily determined by the longitudinal conductivity of the layer S and the
height of the source rise. High-frequency asymptotics AL(mw—0) depends only on the height of the source
and does not depend on the longitudinal conductivity of the layer. Its physical equivalent, according to (19),
is the mutual inductance of the true and mirror-like source relative to the surface of the conducting layer.

Having experimental definitions of AR and AL in the high-frequency range, and using the functions
flh/ryu f' (h/r) which plots shown in Figure 2, one can determine the height of the source 4 from the asymp-
tote AL, and the longitudinal conductivity of the layer S by the asymptote AR. Therefore, for the model of the
medium under consideration, the problem is solved completely and uniquely. An example of such a determi-
nation from the experimental data shown in Figure 8 is presented at the end of the paper.

For a special case, when the loop is dropped directly onto the layer (A=0), we can obtain the following
expression:

©

AR(®) = qmua.[ o

0

m

= J(mr)dm = (n’nrow)arl, (ar)K, (ar), (21)
a

where I1(ar), Ki(ar) are Bessel modified functions (when calculating the integral there were used references
[8,9]). The plot for the expression obtained is presented in Figure 3. In Figure 4 there is shown the
nomogram AR/ (nznroou) =f (ar) that provides a correct definition of the longitudinal inductance S of the

thin layer.

To obtain high-frequency asymptotics of expression (21) we use asymptotic presentations of Bessel
modified functions for large values of argument:

I, (x)|HOO = e"/ \V2nx , K, (x)x_m| =e "\/n/2x . As a result we have the following simple result:

AR(®)],._, =q°°—r“. (22)

w—>0 2
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Figure 3. The induction loop active resistance increment Figure 4. Normalizing function for determining the thin
on the thin layer dependence on the filled excitation layer longitudinal conductivity by the induction loop
frequency: Ry=2mn*/S active resistance increment on the layer

Relation (22) indicates that in this case high-frequency asymptotics AR does not depend on the longitu-
dinal conductivity of the layer and increases in proportion to frequency. This result is unbelievable from the
physical point of view, for it is impossible to imagine an induction process in a conducting medium that is
not accompanied by eddy currents losses. The considered result is obviously a purely mathematical abstrac-
tion, since with integral characteristics of the electromagnetic field it is physically unacceptable to disregard
the real dimensions of the source. The introduction of at least an insignificant rise height exceeding the radi-
us of the supply cable immediately leads to a frequency-independent asymptote AR in the high-frequency
region. However, this result cannot be neglected completely, since it expresses the limit mathematically pos-
sible case which determines the main regularities of the active resistance increment behavior in the high-
frequency range. Its direct consequence is the shift of the frequency-independent asymptote to the region of
higher frequencies with decreasing the rise height of the loop.

Now let us turn to consideration of the low-frequency asymptotics. Performing, the corresponding esti-
mates of integrals (18), we obtain the following result:

AR(®)|, ,, =n’q (02525 T e_;mh Ji(mr)dm =n’r’ W’ o’S £ (h/r),
0 (23)
AL(w)| , =-n’q 'W'S” te T - J (mr)dm = —%n2r3u3m2S2fl( j ,
0
(o oo 22
where r) k lk o hl K s (24)
finir) ==2r D B - K]+
Asymptotic properties of functions f;(4/r) and ff(h/r) are as follows:
2
KD, o=t A, =30 M R, =T ), =T (hj SR

Their plots in the functional dependence on h/r are shown in Figure 5.
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Figure 5. Plots of functions fi(4/r) and f; (h/r): Figure 6. Plot of normalizing function for determining A/r:
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Consequently, in the low-frequency range, the asymptotic values AR(®) and AL(®) increase in propor-
tion to the square of the frequency ® and depend on the longitudinal conductivity of the layer. The increased
sensitivity to the longitudinal conductivity is inherent in AL(®) as it depends on S°. Both parameters also car-
ry the information of the height rise 4 of the loop over a thin layer. Equations (23) are independent, as a re-
sult of which an unambiguous solution of the inverse problem is possible: determining S and /4 from the re-
sults of the experiment. At this, as the normalization function for determining the relative height 4 / » there
can be used the following relation:

hl n T
F(ﬁjz L] Lk[E(")‘K(")]H}

fih/ry 11 1 3nh
—|| =5-1K(k)—| -2 |E(k) |-——
(k) e (k) 4y
The plot of the normalizing function with its asymptotes

k| \ K
2 3
(2.5 = AL/ @
" Noso 16 "N 96/ \r
is presented in Figure 6.

Determining the information parameters # and S is practically reduced to the equation:

ilzz/(3n2m0f) = F(i) (27)

and determining on its basis the relative height 4/r with the following calculation of the longitudinal conduc-
tivity of the layer by the active resistance increment AR:

S = AR (28)

(nruo) fhir

Having considered asymptotic representations of the integral characteristics of the induction loop locat-
ed over the thin conducting layer, it is not difficult to form a qualitative representation of the overall depend-
ence of dynamic increments of the active resistance and inductance determined by formulas (18). So, at low
frequencies, AR(®) and AL(®) in the absolute value increase quite intensively in proportion to the square of
frequency. With increasing frequency, the frequency dependence is weakened and the frequency-
independent asymptote sets in at high frequencies.

The indicated regularities are confirmed by the results of physical modeling. For example, Figures
7 and 8 show the experimental curves of AR(w) and AL(®) as a function of frequency obtained by placing
the induction loop directly on the conductive layer (Fig. 7) and over the layer at the height 2 = 7.5 cm
(Fig. 8). Parameters of the loop located on the layer: number of turns n = 75; radius r = 5.3 cm; resistance

(25)
r
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R =2.435 Ohm; Inductance L = 1.1753 mH. Parameters of the loop above the layer: n = 115; r = 14.5 cm;
R =14.555; L = 0.7545 mH. As a conducting layer, a layer of lead 5 mm thick with longitudinal conductivity
S =25000 cm was used.

o
Owm, mH Om, mH 7 /
1 1 == AL=0,92mH mmantadoaazy
AR=0,62 Om === gt =
/
AL /
[TapameTpb! neTIH:
0,1 0,1 7 n=115 BuTKOB
* IMapameTps! metmu: \' r=0,145 m
n=75 sutkoB; 1=0,053 M | ' e
~ . 1=0,7545 mH
R=2,435 Om; L=1,1753 mH 7 h=1.5 cm o
A R=14,555 Om
4
AR=5 MM ,’, 7 = Ah=2.5 MM
CeuHell  §=25000 Cm S/ Cauren §=25000 Cm
0,01 T 0,01 L. I
10 100 1000 S.Tu 10 100 1000 f,Tn
Figure 7. Experimental frequency dependences of the Figure 8. Experimental frequency dependences
induction loop integral; characteristics of the induction loop integral; characteristics
on the conducting layer over the conducting layer

In Figure 7, in addition to the experimental plot of dynamic increments of the active resistance, there is
shown the theoretical plot of the frequency dependence of 4R(f) calculated by formula (21) for an ideal mod-
el of a thin conducting layer with longitudinal conductivity of 25,000 cm excited by an "ideal" induction loop
(h=0) with a radius corresponding to the experimental (dashed curve). It can be seen that in the low-
frequency range the theoretical plot and the experimental result coincide completely that confirms the possi-
bility of unambiguous determining the layer conductivity from experimental measurements of AR(w) in the
low-frequency region. Interpretation of the data in this low-frequency interval made it possible to obtain the
conductivity values S within the limits of 24000 £+ 24770 cm. As the frequency is increased, the theoretical
and experimental curves of 4R(f) become discernible which, apparently, is related to the influence of the skin
effect: the physical model, in contrast to the idealized mathematical model, has a real thickness. As for the
dependence AL(w), it seems that the low-frequency asymptote for inductance, in contrast to the active re-
sistance, occurs in the interval of substantially lower frequencies, as is evidenced by the non-coincidence of
the theoretical low-frequency asymptote calculated in accordance with formula (23) for the idealized mathe-
matical model in which fi(4/r)|,-o =1 (a dotted line). Apparently, in the low-frequency region the influence
on AL(®) of the real "effective radius" ry of the multi-turn wire of which the loop located on the layer is
made, is more significant than resistance. It goes without saying that these features of physical modeling re-
quire more careful theoretical and experimental analysis.

From considering experimental plots of frequency dependences of integral characteristics of the in-
duction loop over the conducting layer (Fig. 8) it follows that high-frequency asymptotes AR(®) and
AL(®) correspond completely to formulas (19). The practice of physical modeling proves also that with
continuation of increasing frequency, the AR(w) values come from the horizontal asymptote to gradual
increasing that is caused by the skin-effect in real models of thin layers that is not taken into account by
the idealized theoretical calculation. The high-frequency asymptote AL(®) value made 0.92 mH, and AR(®)
— 0.62 Ohm. Interpretation of these asymptotic data made it possible to obtain a sufficiently high-precision
result: the height rise of the loop was 4 = 7.38 cm, the longitudinal conductivity of the layer was S = 23570
cm. Interpretation by low-frequency formulas eventually led to comparable data: 2 = 8.2 cm, S = 25000
In Figure 8 the dashed lines show the low-frequency asymptotes AR(w) and AL(®w) calculated from the in-
terpretation data. In the low-frequency range they agree well with experimental observations. Thus, the re-
sults obtained indicate a sufficiently high accuracy of experimental observations and methods of their inter-
pretation.
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Conclusion

It is obvious that the possibilities of developing methods of applied electrometry on alternating current
are far from exhausted. One of the possible trends of their further development can be considered in the arti-
cle concept of using as initial information data for solving applied problem the integral characteristics of the
sources of excitation of electromagnetic fields: their active resistance and inductance. The dynamic depend-
ence of these characteristics on the rate of changing the field that reflects the dynamic interaction of the field
source and the medium itself, in this case will be the information base permitting to study surface electric
profiles.

The paper considers one of the electrodynamic problems aimed at studying the interaction of an induc-
tive ungrounded loop with a thin conducting layer in order to elucidate the information possibilities of dy-
namic changes in active resistance and loop inductance as a source of an exciting magnetic field. As a result
of the carried out analytical studies there have been obtained relations describing frequency dependences of
active resistance increments and inductance of induction loops located over the thin conducting layer and
directly on it. On the basis of an asymptotic analysis of dynamic changes in integral characteristics in the
high and low frequencies region there have been developed the principles and algorithms for interpreting
experimental data.

The results of physical modeling and their subsequent analysis on the basis of completed theoretical de-
velopments fully confirm the correctness of solutions obtained and sufficiently high information content of
the integral characteristics of induction loops. The further developing and deepening of theoretical and tech-
nical studies in this trajectory can ensure developing integrated sounding methods which with significantly
lower energy costs of experimental work can provide a noticeable increase in the depth of electromagnetic
sounding.
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Kyka oTKi3rim KadaTTbIH YCTiH/I€e OPHAJACKAH UHIYKUMSJIBIK
WIreKTiH MHTerpajibIK CHIATTAMAJIAPBI

XKepueri 2MeKTPMarHUTTIK OpICTEpAiH IKaNMbUIAHFAH 3aHAbUIBIKTAPBIH KEHICTIKTIK 3JeKTp Ti30ekrepi
periHge Tamgay HETi3iHAE OSJIEeKTPMArHUTTIK OYpFBUIAYIBIH HHTETPAJABl KaFMJAachl KOJIAHBUIATHIH
QNIEKTPMETPHUSIHBI JIAMBITYJaFbl MYMKiH jKaHa OarbITTBIH HETi3ri KbIpJIapblH afKbIHIAHTHIH XKaJIIbl HBICAH
a3ipieHni. ['apMOHMKAIBIK TOKIIEH JKYKA OTKI3Till KabaThl 6ap iMTeKTiH IHMHAMUKAIBIK ©3apa dpEeKeTTecy
Mocereci mentinai. HoTmkecinne XUUTIKTIH (YHKIUICH peTiHae OenceHIl KapchUlacyblH JKOHE IUKIITIH
UHAYKTHBTIUIIHIH AMHAMHUKAIBIK KaJaMIapblH CUIIATTAWThIH aHAJIMTUKAJIBIK KaThlHacTap anblHIbl Onapra
ACHMITOTAJIBIK TOMEH XKOHE KOFAPhI KHUTIKTEP apaJIbIKTapbl OOMBIHIIA aCHMITOTHKAIBIK TaJay >Kacalbl,
OHBIH HeTI3IHAe MHAYKLMS UUKIIHIH MHTErpaJIibl CUMAaTTaMaNapbIHbIH SKCIEPUMEHTAIABIK TOYeIUTIKTepiH
HHTepIpeTanusiay anroputmaepi o3ipsienai. OpblHAanFal ipreni a3ipiaeMenep 3epTXaHAIBIK OJIIeyIepaiH
IKCIIEPIMEHTTIK JiepeKTepiHe OeNCeHAl OTKI3TIMTIKTIH, OTKI3rim KabaT YCTiHAe >XOHe OHBIH OeTiHe
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OpHalacKaH UIreKTepOiH WHIYKTHBTUIMHIH ©cy IKHMINICiHIH Toyenaimiri Tekcepiami. WHIYKIUSIBIK
LUKIOAPABIH HMHTETPAIIbIK KOPCETKIIITEPAIH TEOPHWSUIBIK o3ipieMerepi JKoHE aKMapaTTBUIBIFBI TOJBIK
pacTanmsl.

Kinm ce3dep: anektpiik O0apiay, WHIYKIUSIIBIK UK, OSJICEHAlI KapCBUIBIK, OOMIIBIK OTKI3TIlITIK, OTKI3TilI
Kabar, MarHUT aFbIHbI, )KHLTIK, THTETPALUSUIBIK CHITaTTaMaNap, SICKTPMAarHUTTIK 30H/ITaY.

B.C. IloptHoB, H.B. PeBa, B.1. Onumyk, E.C. JIu

HNuTerpanbHble XapaKTePUCTUKU UHAYKIHMOHHOM MeTJIu,
PacnoI0KeHHOH HA/l TOHKUM MPOBOASIIIIUM CJI0EM

Ha ocnoBe ananmm3a 0000IIEHHBIX 3aKOHOMEPHOCTEH IIEKTPOMArHUTHBIX IOJIEH B 3eMile, KaK MPOCTPAHCT-
BEHHBIX JJIEKTPHUYECKUX Ilened, B obmiel (opMe pa3paboTaH WHTETPAIBHBINA HPUHIMI AIEKTPOMATHUTHEIX
30HIMPOBAHUM, KOTOPHIH ompenenser co00if OCHOBHEIE KOHTYPHI BO3MOXKHOTO HOBOTO HAINpaBJICHUS Pa3BH-
TUS TIPUKIIAJHON 3IIEKTpOoMeTpuH. Pelena 3a1a4a 0 JUHAMUYECKOM B3aUMOJICHCTBUY HE3a3¢MICHHON NETIH,
MUTaeMOI TapMOHUYECKHM TOKOM, C TOHKMM MPOBOJSIINM clloeM. B pesysnbrare pemeHus 31oif 3aga4uu mo-
Jy4eHbl aHAJTUTHYECKHE COOTHOIIEHHUS, OMUCHIBAIOIINE JUHAMUYECKUE MPHUPAIIEHNS aKTUBHOTO COIMPOTHUB-
JIEHUs U MHIYKTUBHOCTH NETIH B 3aBUCUMOCTH OT YaCTOTHI. BBIMOMTHEH aCHMNTOTHYECKUT aHAIN3 MOTyYeH-
HBIX COOTHOIIECHUH B MHTEpBallaX aCUMITOTHYECKH HU3KHX U BBICOKHX YacTOT, HA OCHOBE KOTOPOTO pa3pa-
0OTaHbI AITOPUTMBI HHTEPIIPETANH IKCIEPHIMEHTAIBHBIX YaCTOTHBIX 3aBUCHMOCTEH MHTETPAIbHBIX Xapak-
TEPUCTHK MHAYKINOHHOW IeTIH. BEIOTHeHHBIE TPHHIMINANEHEIE PAa3paO0TKU UCIIBITAHBI Ha AKCIICPHUMEH-
TaJIbHBIX JAQHHBIX JJAOOPATOPHBIX M3MEPEHUH YaCTOTHBIX 3aBHCHMOCTEH MPUPANICHUs] aKTUBHOTO CONIPOTHUB-
JICHUS. U UHAYKTHUBHOCTY II€TEIIb, PACIIOIOKEHHBIX HaJl IPOBOSIIUM CIOEM U Ha ero nosepxHocru. [lomyde-
HO TIOJIHOE TIOJATBEPXKJEHHE TEOPETUUECKUX Pa3paboOTOK M WH(POPMATHBHOCTH MHTErPATbHBIX MapaMeTpoB
UHIYKIIMOHHBIX METEINb.

Knioueswie crosa: snekrpopasBesika, MHIYyKIHOHHAS MIET/Is, aKTHBHOE CONMPOTHUBIIEHNE, NHIYKTHBHOCTD, TIPO-
J0NbHAsi TPOBOJUMOCTD, MPOBOASAIINI CIIOM, MarHUTHBIM MOTOK, YAaCTOTA, MHTETPAIbHbIE XapaKTEPUCTUKH,
JJIEKTPOMArHUTHOE 30HIUPOBAHUE.
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