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Integral characteristics of induction loop located overthin conducting layer 

In the general form, the integral principle of electromagnetic soundings was developed, based on an analysis 
of generalized regularities of electromagnetic fields in the Earth, as spatial electric circuits. The mentioned 
approach determines the basic contours of a possible new direction in the development of applied 
electrometry. The problem of the dynamic interaction of an ungrounded loop, that is powered by a harmonic 
current, with a thin conducting bed, was solved. Analytic relationships that describe the dynamic increments 
of the active resistance and loop inductance as a function of frequency were obtained as a result of solving 
this problem. The asymptotic analysis of the obtained relations in the intervals of asymptotically low and high 
frequencies was performed, and on the basis of received results algorithms for interpreting the experimental 
frequency dependences of integral characteristics of the induction loop were developed. The performed fun-
damental developments were tested on experimental data of laboratory measurements of the frequency de-
pendences of the increment of the active resistance and inductance of loops located above the conducting bed 
and on its surface. A full confirmation of the theoretical developments and in formativeness of the integral 
parameters of induction loops was obtained. 

Keywords: electrical exploration, induction loop, active resistance, inductance, longitudinal conductivity, 
conductive layer, magnetic flux, frequency, integrated characteristics, electromagnetic sounding. 

 

Classical modifications of induction sounding of the Earth's subsurface [1-3] are based on the experi-
mental studying of time and frequency characteristics of electric and magnetic field strengths of excitation 
sources at different points on the Earth's surface. Consequently, both in the observational system and in the 
physical nature of the initial information characteristics, these modifications are differential. They are com-
pletely inherited from geometric sounding at a constant current where the differential research system is the 
only possible, and correspond to classical principles of electrical exploration. However, in alternating elec-
tromagnetic fields studying differential characteristics of the field (force) is by no means the only way to 
study subsurface electrical profiles. 

As a new direction in electrical exploration with alternating currents, it is proposed to use the  new prin-
ciple for applied electrometry is the study of the electrical properties of geoelectrical sections, called integral. 

From the point of view of classical principles of electrical exploration, the «ideal» option that has a 
maximum information contentof electromagnetic sounding would be achieved if it were possible to observe 
simultaneously two horizontal components of the electric field (Eх, Еу) and three components of the magnetic 
field (Нх, Ну , Нz) on a set of points on the Earth's surface in the vicinity of the excitation source. Since it is 
technically difficult to implement such observations (it is practically impossible), we can confine to their 
cumulative result that is defined as the flow of electromagnetic energy through the surface of a spatial con-
ductor. Mathematically such a problem is reduced to determining the stream of the Pointing vector 

(
s

P E H dS   
  

). 

According to the well-known Umov-Pointing theorem [4, 5], the energy flux, for the case of a quasi-
stationary approximation, increases with increasing current in the source on the increase in the energy of the 
magnetic field and on the Joule losses in the conducting medium. As the current in the source decreases, a 
part of energy of the magnetic field, with the exception of the necessary Joule losses, returns back to the 
source. Naturally, the Joule loss in the earth has the greatest dependence on the structure of the subsurface 
electric profile, and their dynamic dependence on the rate of changing the field can be accepted as an infor-
mation parameter. Experimental determining of this parameter can be carried out in a rather simple way, in 
particular, by studying the dynamic interaction of the source and the conducting half-space. Thus, in princi-
ple, it is possible to perform electromagnetic sounding based on an observation system that excludes special 
receivers.Induction loops and grounded lines can be used as field excitation sources. The method can be im-
plemented in a harmonic mode and in a transient mode. A modification based on the use of induction loops 
in a harmonic mode can be called integral induction sounding.  
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The purpose of this article is on the basis of a rigorous solution of the electrodynamic problem of the 
harmonic magnetic field of a circular induction loop, located above a thin conducting layer, to consider the 
basic principles of integral induction sounding, to investigate their informativeness and to confirm the possi-
bility of their practical realization by physical modeling. 

1. Electromagnetic field of a circular loop over a thin conducting layer 

A thin conducting layer is a simple model of a conducting medium, for which relatively simple solu-
tions can be obtained. It is known from the classical theory of electrical exploration that such a model can 
reflect the basic anomalous regularities of electromagnetic fields caused by real subsurface electric profiles 
in the low-frequency range when the field extends to a considerable depth and its structure is determined 
mainly by the generalized parameters of the profile. Therefore, such a model is of great importance for 
studying the basic regularities of the method and makes it possible to obtain simple working formulas for the 
analysis of experimental data. 

Integral characteristics of the induction loop can be simply expressed if their quasi-stationary electro-
magnetic field is known. Therefore we consider the problem in general. 

A circular one-turn induction loop of r radius made of a thin cable of r0<<r radius is located at the h 
height over a thin conducting layer (Fig. 1) that has a vanishingly small thicknessh0 and longitudinal 

conductivity  
0

lim
h

S h
 

     ( is specific conductivity of the layer). Magnetic permeability of the layer  

and the surrounding insulator is equal to the magnetic permeability of the vacuum:  = 410-7 HN / m. The 
loop is excited by the harmonic current I(t)=Ie-it(Iis the amplitude value of the current,  is the circular ex-
citation frequency, t is the time, i = -1 1 is the imaginary unit). The initial phase of the exciting current is 
selected in such a way that for 0 the direct current flows clockwise. There should be determined: the 

magnetic field H


at any point in space; the surface density of the induced eddy current i


at any point of the 
conducting layer; caused by eddy current losses frequency-dependent increments of the active resistance 
R()and inductance L()with respect to the steady-state mode (inserted resistance and inductance). 

Because of the axial symmetry of the problem, its solution is performed in a cylindrical coordinate sys-
tem (R,,z) with the origin at the center of the loop and the z axis directed vertically downward (Fig. 1). The 
conductive layer divides the space into two half-spaces: the upper half (1), where the source is located, and 
the lower half (2). The problem is solved in quasi-stationary approximation. 

 

 

Figure 1. Induction loop over a thin layer 

The resulting magnetic field H


is represented as a superposition of the frequency-independent primary 
field 0( , )H R z


and the frequency-dependent secondary field ( , , )аH R z 


of eddy currents that cause the ab-

normality from the conducting layer:   

0 0( , ) ( , ) ( , , )aH R z H R z H R z  
  

.     (1) 
Quasi-stationary magnetic field in the insulator  where there are no currents of conductivity is potential 

and can be easily determined via the scalar potential U in the expression 
gradH U 


.      (2) 
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The scalar potential of magnetic field satisfies the Laplace axisymmetric equation 

2

2

1
0,

U U
R

R R R z

         
 (3) 

that is true for the upper and lower half-spaces (U1 and U2) excepting the points of the conducting layer and 
the cable. This equation is also satisfied by both primary and secondary and thus the resulting fields. 

The problem is solved when observing certain boundary conditions on the thin conducting layer. Pro-
ceeding from the Biot-Savart’s law for surface currents there is established the following boundary condition 
for tangential components of the magnetic field vector [4]: 

 

2 1ot ( )[ ]R H n H H i   
   

, (4) 

where RotH


 is the surface rotor of the magnetic field vector; n


 is the normal ort to the layer surface; 

1 2,  H H
 

 are magnetic fields from the different sides of the conducting layer; i


 in the current surface density 
of the conducting layer (А/m). Since in the considered case the vector of the current surface density  will be 

presented only by the azimuth component ( 0i і 


), the scalar shape of the boundary condition (4) will have 

the form 
(2) (1)
R RH H i  .                         (4а) 

The second boundary condition is the continuity of the normal components of the magnetic field 
([Нz]=0)  upon transiting through the conducting layer, since by the condition of the problem its magnetic 
permeability does not differ from permeability of the surrounding medium. 

The third boundary condition on the thin conducting layer is the Scheinman-Price condition [4] which is 
represented in the following form 

(2) (1)
2 (1,2)z z
s z

H H
k H

z z

 
  

 
, (5) 

where sk i S   is the wave constant of the conducting layer. 

Since the considered electro-dynamic  problem is solved via integrating the Laplace equation for the 
magnetic fields potential (3), the mentioned boundary conditions on the surface of the conducting layer can 
be rationally presented in the following convenient for using form 

1 2

z h z h

U U

z z 

 


 
;   

2 2
1,222 1

2 2 s

z hz h z h

UU U
k

z z z  

 
  

  
;  1 2( , )

z h z h

U U
i R

R R
 

 
  

 
.  (6) 

The finiteness and continuity of the potential functions U1(R,z) and  U2(R,z) in the entire space and their 
regularity in the infinity are taken as the limit conditions of the problem. 

Concluding our consideration of the method for solving the problem, we point out physical simplifica-
tion which is due to the adopted model of a thin conducting layer. The very formulation of such a problem 
neglects automatically the phenomenon of skin effect in the conducting medium and takes into account only 
induced currents. Therefore practical applicability of the subsequent solutions is limited to such a frequency 
range for which the thickness of the skin layer in the real section exceeds significantly the thickness of the 
conductive deposits. 

Axisymmetric integrals of the Laplace equation (3) damping in the infinity, with the condition (1) taken 
into account, can be represented in the following form: 

1 0 0

0

2 0 0

0

( , , ) ( , ) ( , ) ( )       при ;

( , , ) ( , ) ( , ) ( )       при .

mz

mz

U R z U R z A m e J mR dm z h

U R z U R z B m e J mR dm z h







     



     




.   (7) 

The first summands in expressions (7) represent the primary magnetic field of the loop, the second ones 
the field of the eddy currents induced in the conducting layer. As for the primary magnetic field, to obtain it 
we need to consider the solution of an individual problem which we omit in this paper but give only the final 
result: 
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),(  ,             (8) 

where J0, J1 are Bessel’s functions. The  “” sign in this expression is used at z<0, а “” at z>0. 
In order to obtain explicit solutions, it is necessary to determine the unknown functions A(m,) and 

B(m,) that appear as a result of integrating the Laplace equation. This can be done by satisfying the first 
and the second boundary conditions (6), taking into account, moreover, expression (8) for the primary field. 
As a result we obtain integral expressions for the scalar potential of the magnetic field in an explicit form in 
the form of a superposition of the primary and secondary fields 

2 (2 )

1 0 1 02
0

2

2 0 1 02
0

( , , ) ( , ) ( ) ( )
2 2

( , , ) ( , ) ( ) ( )
2 2

m h z
s

s

mz
s

s

Irk e
U R z U R z J mr J mR dm

m k

Irk e
U R z U R z J mr J mR dm

m k

  

 


    


    




.   (9) 

From the result obtained it follows that in the case of high frequencies or an ideally conducting layer in 
the upper half-space the field is represented as a superposition of the primary field of the true source and the 
mirror image of the fictitious source with counter-phase excitation with respect to the plane of the layer. In 
the lower half-space under these conditions the primary field is completely compensated by the secondary 
field of eddy currents, that is the electromagnetic field does not penetrate into the lower half-space. Thus, at 
high frequencies the reflecting and shielding properties of the conductive layer are sufficiently expressive. 

According (2), the magnetic field via the scalar potential can be determined rather easily: Нz=  U/z, 
НR=  U/R. taking into account the third boundary condition (6), it is easily to determine the surface densi-
ty of the induced in the conducting layer eddy current that has only the azimuthal direction: 

21 2
1 12

0

( , ) ( ) ( )
2

mh

sz h
z h z h s

U U me
i R Irk J mr J mR dm

R R m k

 

 
 

 
   

   . (10) 

The electric field on the surface of the conducting layer can be easily determined based on the Ohm’s 
law for surface currents [4, 5]: 

1
( , ) ( , )E R i R

S    . 

Proceeding from the definition of the current surface density, in this simple case there can also be calcu-
lated the total force of the induced in the layer eddy current:  

2
12

0 0

( ) ( , ) ( )
2

mh

s s
s

e
I i R dR Irk J mr dm

m k

  

   
  . (11) 

The limiting case of the electromagnetic field of the induction loop is the vertical magnetic dipole field. 
It is easy to be obtained on the basis of expression (9) if we set infinitely small dimensions of the loop (r0) 
and take into account the asymptotic representation of the Bessel function for the small (J1(mr)|r0=mr/2).  
Taking into account also the expression for the primary field (8) and performing its possible integration, for 
the dipole source we obtain: 

 

 

(2 )
(0) 2
1 03 2 22 2

0

(0) 2
2 03 2 22 2

0

( , , ) ( )  
4 2

( , , ) ( )  
4 2

m h z

s
s

mz

s
s

Iq z e
U R z k J mR dm

m kR z

Iq z e
U R z k J mR dm

m kR z

  

 

 
   
   


  
    

     





, (12) 

where q=r2 is the source area. 
The integrals in (12) for the particular case where the source and the observation point are on the sur-

face of the layer (h0, z0) can be represented via modified Bessel and Struve functions. A detailed analy-
sis of the electromagnetic field of a vertical magnetic dipole is contained in [6, 7]. Unfortunately, it is not 
possible to represent the integrals of expression (9) in the form of elementary or special functions. Therefore, 
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with the exception of asymptotic representations, the possibilities of their analytical investigation are limited 
only by numerical integration. 

We are particularly interested in the frequency-dependent vertical component of the secondary magnet-
ic field in the upper half-space where the source is located. Therefore, according to (2) and (9), we represent 
it in this form: 

2 (2 )
(1) 1

1 02
0

( )
( ) ( ) ( )  

2 2

m h z
s

z
s

U Irk me
H J mr J mR dm

z m k

   
   

  . (13) 

Multiplying and dividing the numerator and the denominator of the integrand by the quantity conjugate to 
the denominator, we separate the real and imaginary parts in the considered component: 

(1) (1) (1)
z z z( ) Re ( )  Im ( ),   H H i H      

2 (2 )
(1)

1 02 2
0

2 (2 )
(1)

1 02 2
0

                      Re ( ) ( ) ( ) ,      
2

                      Im ( ) ( ) ( ) ,
2

m h z

z

m h z

z

Ira me
H J mr J mR dm

m a

Ira m e
H J mr J mR dm

m a

  

  

  


 





 (14)  

where а=S/2. 
Thus, in the upper half-space, due to the induced eddy currents, the real component of the vertical mag-

netic field is weakened, and the imaginary component is amplified. Relations (14) will then be needed as ini-
tial values for obtaining the integral characteristics of the induction loop. 

2. Integral characteristics of the induction loop. 

The induction loop, as a source of the magnetic field, has its own inductance Lc consisting of the exter-
nal static inductance L and the internal inductance of the cable L0: Lc=L+L0 from which it is made. Static and 
internal inductances can be estimated from the formulas known in electrical engineering: 

0
0

8
ln 2

r
L r

r

 
   

 
,     

8

l
L





, 

where 0=410-7 HN/m is the vacuum magnetic permeability;  is the cable magnetic permeability, l its 
length. If the loop is multi-turn, the external inductance is determined by the linkage and the corresponding 
formula must be multiplied by the square of the number of turns. 

Determining the integral characteristics of the induction loop is connected with calculation of the mag-
netic flux through its circuit. Leaving aside the primary magnetic flux that determines static inductance of the 
loop, as well as the internal magnetic flux determined by the internal inductance of the cable, let us study the 
anomalous flux of the secondary field of eddy currents. At this we use expressions (14) as the initial rela-
tions, and representation of the magnetic flux Φ in terms of the surface integral:

  (1)
0

0

2 |
r

n z z

s

Ф B ds H RdR    . 

As a result for the real and imaginary components of the magnetic flux through the loop circuit we ob-
tain the following expressions: 

2 2
2 2 2

1 12 2 2 2
0 0

Re ( ) ( ) ,     Im ( ) ( )
mh mhe me

Ф Iq a J mr dm Ф Iq a J mr dm
m a m a

  

      
   . (15) 

Thus, the secondary magnetic flux is composed of a negative real part and an imaginary positive part 
which is physically conditioned by the so-called «demagnetizing action of eddy currents». 

Now we can calculate the integral characteristics of the induction loop. To do this we use the Ohm's law 
for a closed electrical circuit with successive switching active resistance Ra and inductance L which corre-
sponds to the problem under consideration. Taking into account the time harmonic dependence of the field 
(е-it), the Ohm's law can be represented in the following form: 

l
a a l

Ф
V I R I R i Ф

t


      


, 

where I, V, Фl  are current, voltage values in the loop circuit and the total (primary and abnormal) mag-
netic flux through this circuit. Then the complex resistance Z of the induction loop considering that 
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Фl=Ф0 + ReФ()+іImФ() where Ф0 is the magnetic flux of the primary magnetic field, will be determined 
in the form: 

Im ( ) Re ( )
a

V Ф Ф
Z R i L

I I I

               
, (16) 

where Ra, L=Ф0/I  is static resistance  and static inductance of the loop.  
Thus, the secondary magnetic flux determines the frequency dependent increments of the active re-

sistance and loop inductance (inserted resistance and inductance) which manifest themselves against the 
background of its static parameters. Accordingly, the equation of the induction loop, as a closed electrical 
circuit, can be represented in the following form: 

   ( ) ( )a

V
Z R R i L L

I
          . (17) 

Taking into account (15) and (16) for dynamic increments of the active resistance R and inductance 
L we will obtain the following expressions: 

2
2
12 2

0

( ) ( )
mhme

R q a J mr dm
m a

 

   
 ;  

2
2 2

12 2
0

( ) ( )
mhe

L q a J mr dm
m a

 

    
 . (18) 

If the loop is multi-turn, then the obtained formulas should be multiplied by the square of the number of 
turns п2 owing to the presence of mutual induction of the turns. 

Thus, the increment of the active resistance R() determines eddy current losses in the conducting 
medium and is always positive. The increment in inductance L()reflects physically the demagnetizing ef-
fect of eddy currents and is, consequently, negative. Frequency-dependent increments of the active resistance 
and inductance of the field excitation source, as follows from (18), are informative parameters and, conse-
quently, can be accepted as new for electrical exploration of integrated sources of subsurface electric pro-
files. 

Integrals (18) cannot unfortunately be expressed in terms of elementary or known special functions. 
Therefore it is practically important to obtain their asymptotic representations for high and low frequencies. 
Carrying out an estimate of these integrals for high-frequency asymptotics of a multi-turn loop, we obtain the 
following formulas: 

2 2
2 2

1

0

2 2 2 2
1

0

( ) 2 ( )  ;

( ) ( )  ,

mh

mh

n n h
R q me J mr dm f

S S r

h
L qn e J mr dm n r f

r











      
 

          
 




 (19) 

where п is the number of turns in the induction loop.  
Function f(k) is expressed via complete elliptic integrals, and function ( )f k is determined via its deriv-

ative by the loop height h: 

2 2
 ( ) ( ) ,

h
f k K k E k

r k k

              
 

2

1
 1 ( ) 2 ( ) ,

1

h f h
f r k E k K k

r h r k

                     
 (20) 

where 2 2/k r r h   is the module of complete elliptic integrals of the first K(k) and the second E(k) type: 
2

2 2
0

( )
1 sin

d
K k

k

 


 
 ,    

2
2 2

0

( ) 1 sinE k k d


    . 

The calculated  plots of these functions in dependence on h/r are shown in Figure 2.  
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Figure 2. Plots of functions f(h/r)  and  f ʹ(h/r) 

Thus, high-frequency asymptotics of dynamic increments of the active resistance and inductance are in-
dependent on frequency which is due to the reflective properties of the conducting layer. High-frequency 
asymptotics R(∞)  can be easily determined by the longitudinal conductivity of the layer S and the 
height of the source rise. High-frequency asymptotics L(∞) depends only on the height of the source 
and does not depend on the longitudinal conductivity of the layer. Its physical equivalent, according to (19), 
is the mutual inductance of the true and mirror-like source relative to the surface of the conducting layer. 

Having experimental definitions of R and L in the high-frequency range, and using the functions 
f(h/r) и  f ′ (h/r) which plots shown in Figure 2, one can determine the height of the source h from the asymp-
tote L, and the longitudinal conductivity of the layer S by the asymptote R. Therefore, for the model of the 
medium under consideration, the problem is solved completely and uniquely. An example of such a determi-
nation from the experimental data shown in Figure 8 is presented at the end of the paper. 

For a special case, when the loop is dropped directly onto the layer (h=0), we can obtain the following 
expression: 
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where І1(ar), K1(ar) are Bessel modified functions (when calculating the integral there were used references 
[8, 9]). The plot for the expression obtained is presented in Figure 3. In Figure 4 there is shown the 

nomogram    2R n r f ar      that provides a correct definition of the longitudinal inductance S of the 

thin layer.  
To obtain high-frequency asymptotics of expression (21) we use asymptotic presentations of Bessel 

modified functions for large values of argument:  
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Figure 5. Plots of functions f1(h/r)
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R = 2.435 Ohm; Inductance L = 1.1753 mH. Parameters of the loop above the layer: n = 115; r = 14.5 cm; 
R = 14.555; L = 0.7545 mH. As a conducting layer, a layer of lead 5 mm thick with longitudinal conductivity 
S = 25000 cm was used. 

 

  
Figure 7. Experimental frequency dependences of the 

induction loop integral; characteristics  
on the conducting layer 

Figure 8. Experimental frequency dependences  
of the induction loop integral; characteristics  

over the conducting layer 

In Figure 7, in addition to the experimental plot of dynamic increments of the active resistance, there is 
shown the theoretical plot of the frequency dependence of ΔR(f) calculated by formula (21) for an ideal mod-
el of a thin conducting layer with longitudinal conductivity of 25,000 cm excited by an "ideal" induction loop 
(h=0) with a radius corresponding to the experimental (dashed curve). It can be seen that in the low-
frequency range the theoretical plot and the experimental result coincide completely that confirms the possi-
bility of unambiguous determining the layer conductivity from experimental measurements of ΔR() in the 
low-frequency region. Interpretation of the data in this low-frequency interval made it possible to obtain the 
conductivity values S within the limits of 24000 ± 24770 cm. As the frequency is increased, the theoretical 
and experimental curves of ΔR(f) become discernible which, apparently, is related to the influence of the skin 
effect: the physical model, in contrast to the idealized mathematical model, has a real thickness. As for the 
dependence ΔL(), it seems that the low-frequency asymptote for inductance, in contrast to the active re-
sistance, occurs in the interval of substantially lower frequencies, as is evidenced by the non-coincidence of 
the theoretical low-frequency asymptote calculated in accordance with formula (23) for the idealized mathe-
matical model in which f1(h/r)|h=0 =1 (a dotted line). Apparently, in the low-frequency region the influence  
on ΔL() of the real "effective radius" r0 of the multi-turn wire of which the loop located on the layer is 
made, is more significant than resistance. It goes without saying that these features of physical modeling re-
quire more careful theoretical and experimental analysis. 

From considering experimental plots of frequency dependences of integral characteristics  of the in-
duction loop over the conducting layer (Fig. 8) it follows that high-frequency asymptotes ΔR() and 
ΔL() correspond completely to formulas (19). The practice of physical modeling proves also that with 
continuation of increasing frequency, the ΔR() values come from the horizontal asymptote  to gradual 
increasing  that is caused by the skin-effect in real models of  thin layers that is not taken into account by 
the idealized  theoretical calculation. The high-frequency asymptote ΔL() value made 0.92 mH, and  ΔR()  
–  0.62 Ohm. Interpretation of these asymptotic data made it possible to obtain a sufficiently high-precision 
result: the height rise of the loop was h = 7.38 cm, the longitudinal conductivity of the layer was S = 23570 
cm. Interpretation by low-frequency formulas eventually led to comparable data: h = 8.2 cm, S = 25000  
In Figure 8 the dashed lines show the low-frequency asymptotes ΔR() and ΔL()  calculated from the in-
terpretation data. In the low-frequency range they agree well with experimental observations. Thus, the re-
sults obtained indicate a sufficiently high accuracy of experimental observations and methods of their inter-
pretation. 
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Conclusion 

It is obvious that the possibilities of developing methods of applied electrometry on alternating current 
are far from exhausted. One of the possible trends of their further development can be considered in the arti-
cle  concept of using as initial information data for solving applied problem the integral characteristics of the 
sources of excitation of electromagnetic fields: their active resistance and inductance. The dynamic depend-
ence of these characteristics on the rate of changing the field that reflects the dynamic interaction of the field 
source and the medium itself, in this case will be the information base permitting to study surface electric 
profiles.  

The paper considers one of the electrodynamic problems aimed at studying the interaction of an induc-
tive ungrounded loop with a thin conducting layer in order to elucidate the information possibilities of dy-
namic changes in active resistance and loop inductance as a source of an exciting magnetic field. As a result 
of the carried out analytical studies there have been obtained relations describing frequency dependences of 
active resistance increments and inductance of induction loops located over the thin conducting layer and 
directly on it. On the basis of an asymptotic analysis of dynamic changes in integral characteristics in the 
high and low frequencies region  there have been developed the principles and algorithms for interpreting 
experimental data.  

The results of physical modeling and their subsequent analysis on the basis of completed theoretical de-
velopments fully confirm the correctness of solutions obtained and sufficiently high information content of 
the integral characteristics of induction loops. The further developing and deepening of theoretical and tech-
nical studies in this trajectory can ensure developing integrated sounding methods which with significantly 
lower energy costs of experimental work can provide a noticeable increase in the depth of electromagnetic 
sounding. 
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В.С. Портнов, Н.В. Рева, В.И. Онищук, Е.С. Ли  

Жұқа өткізгіш қабаттың үстінде орналасқан индукциялық  
ілгектің интегралдық сипаттамалары  

Жердегі электрмагниттік өрістердің жалпыланған заңдылықтарын кеңістіктік электр тізбектері 
ретінде талдау негізінде электрмагниттік бұрғылаудың интегралды қағидасы қолданылатын 
электрметрияны дамытудағы мүмкін жаңа бағыттың негізгі қырларын айқындайтын жалпы нысан 
əзірленді. Гармоникалық токпен жұқа өткiзгiш қабаты бар ілгектің динамикалық өзара əрекеттесу 
мəселесi шешiлдi. Нəтижесінде жиіліктің функциясы ретінде белсенді қарсыласудың жəне циклдің 
индуктивтілігінің динамикалық қадамдарын сипаттайтын аналитикалық қатынастар алынды. Оларға 
асимптоталық төмен жəне жоғары жиіліктер аралықтары бойынша асимптотикалық талдау жасалды, 
оның негізінде индукция циклінің интегралды сипаттамаларының эксперименталдық тəуелділіктерін 
интерпретациялау алгоритмдері əзірленді. Орындалған іргелі əзірлемелер зертханалық өлшеулердің 
эксперименттік деректеріне белсенді өткізгіштіктің, өткізгіш қабат үстінде жəне оның бетінде 
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орналасқан ілгектердің индуктивтілігінің өсу жиілігінің тəуелділігі тексерілді. Индукциялық 
циклдардың интегралдық көрсеткіштердің теориялық əзірлемелері жəне ақпараттылығы толық 
расталды. 

Кілт сөздер: электрлік барлау, индукциялық цикл, белсенді қарсылық, бойлық өткізгіштік, өткізгіш 
қабат, магнит ағыны, жиілік, интеграциялық сипаттамалар, электрмагниттік зондтау. 

 

В.С. Портнов, Н.В. Рева, В.И. Онищук, Е.С. Ли  

Интегральные характеристики индукционной петли,  
расположенной над тонким проводящим слоем 

На основе анализа обобщенных закономерностей электромагнитных полей в земле, как пространст-
венных электрических цепей, в общей форме разработан интегральный принцип электромагнитных 
зондирований, который определяет собой основные контуры возможного нового направления разви-
тия прикладной электрометрии. Решена задача о динамическом взаимодействии незаземленной петли, 
питаемой гармоническим током, с тонким  проводящим слоем. В результате решения этой задачи по-
лучены аналитические соотношения, описывающие динамические приращения активного сопротив-
ления и индуктивности петли в зависимости от частоты. Выполнен асимптотический анализ получен-
ных соотношений в интервалах асимптотически низких и высоких частот, на основе которого  разра-
ботаны алгоритмы интерпретации экспериментальных частотных зависимостей интегральных харак-
теристик индукционной петли. Выполненные принципиальные разработки испытаны на эксперимен-
тальных данных лабораторных измерений частотных зависимостей приращения активного сопротив-
ления и индуктивности петель, расположенных над проводящим слоем и на его поверхности. Получе-
но полное  подтверждение теоретических разработок и информативности интегральных параметров 
индукционных петель. 

Ключевые слова: электроразведка, индукционная петля, активное сопротивление, индуктивность, про-
дольная проводимость, проводящий слой, магнитный поток, частота, интегральные характеристики, 
электромагнитное зондирование.  
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