Investigation of thermoelectric properties of nanocrystalline copper chalcogenides

Modern research efforts are aimed at developing fuel cells characterized by high efficiency, low cost and environmental friendliness, which largely depend on the properties of the corresponding catalyst materials — the most important components of the fuel cell. Catalysts based on metal chalcogenides, predominantly S-based, have activity in accelerating the oxygen reduction reaction comparable to the activity of Pt in H_2SO_4.

The work uses the technique of compacting powder materials and obtained volumetric samples. Nanodisperse powder fractions with an average particle size of (50–100) nm were obtained. The values of the thermo-emf coefficient (about 0.08 mV/K) were obtained for the studied alloy with low defects in the cation sublattice of the Cu_2S_0.5Te_0.5 type. It was found that a decrease in grain size leads to a significant decrease in electronic conductivity for all studied samples. The paper presents the results of a study of the thermoelectric properties of the Cu_2S_0.5Te_0.5 triple alloy. For the studied composition, a decrease in thermal conductivity by (25–30)% and a slight increase in the thermal emf coefficient compared with large-crystal samples were obtained. Low thermal conductivity was found in the range (0.3–1.1) W m\(^{-1}\) K\(^{-1}\) with a conductivity above 1000 ohms -1 cm\(^{-1}\). For the studied sample Cu_2S_0.5Te_0.5 — thermoelectric efficiency (ZT = 0.25) at 400 °C, which allows us to hope for the possibility of improving the characteristics of samples of this composition to acceptable values for practical thermoelectric devices by selecting the optimal alloying.

Keywords: thermoelectric materials; copper sulfide; crystal structure; conductivity; diffusion; thermal conductivity; Seebeck coefficient; superionic conductors.

Introduction

The current efforts of researchers are aimed at developing fuel cells characterized by high efficiency, low cost and environmental compatibility, which largely depend on the properties of the corresponding catalyst materials (the most important components of the fuel cell) [1]. Currently, the best and most commonly used catalysts for fuel cells are still noble metal nanocomposites (catalysts (the most important components of a fuel cell), especially Pt), if we take into account their comparable catalytic characteristics relative to ORR and much lower cost [1].

Metal chalcogenide-based catalysts, mainly based on Se and S, again attracted considerable attention after Alonso-Vante and Tributsch [2] found that Ru_2Mo_4Se_8 has an activity in accelerating the oxygen reduction reaction comparable to the activity of Pt in H_2SO_4 [3, 4]. Many metals forming chalcogenides with S, Se and Te have shown good activity of the oxygen reduction reaction (ORR) [1–4].

Experimental part

The method of synthesis of thermoelectric materials

Due to the high reactivity of tellurium, the synthesis of the required Cu_{2-x}Te,S samples took place in two stages:
1. First, non-stoichiometric compositions of Cu_{2-x}S were obtained.
2. The second stage of the preparation of Cu_{2-x}Te,S samples consisted in the introduction of tellurium instead of the copper missing to the stoichiometric composition in such a way that for the metal as a whole. The binary alloy obtained after homogenization was ground in an agate mortar and placed in quartz ampoules filled with argon, pieces of lithium were placed inside the ampoules of the powder so that they did not come into contact with the walls of the ampoule.

The synthesis temperature was reached within three days with a gradual increase in temperature. The furnace was slowly heated to melt lithium and held for several hours until it dissolved in reagents. The final stage of the synthesis of the substance took place at a temperature of 450 °C for three days.
Results and discussion

The results of alloy synthesis Cu$_2$S$_y$Te$_{1-y}$

Triple Cu$_2$S$_y$Te$_{1-y}$ alloys were synthesized. Strong alloying or substitution is in line with the modern strategy of optimizing the thermoelectric properties of materials [5–8].

Table shows the results of X-ray spectral analysis of the chemical composition of the Cu$_2$S$_{0.5}$Te$_{0.5}$ alloy. The chemical composition was determined by averaging measurements at three different points on the surface. The sample was in the form of a fine powder.

The presence of a noticeable amount of oxygen in the sample indicates a significant oxidation of the surface. Taking into account the formation of an oxide film, the chalcogenide composition on the surface corresponds to the chemical formula Cu$_{1.84}$S$_{0.37}$Te$_{0.63}$. The lack of copper in the composition compared to the charge composition is caused by the action of oxygen. The excess of tellurium and the lack of tellurium relative to the composition of the charge can be explained by significant evaporation of sulfur during synthesis, which took place in a loosely closed ampoule in the presence of argon.

<table>
<thead>
<tr>
<th>Atom %</th>
<th>S</th>
<th>Cu</th>
<th>Se</th>
<th>Fe</th>
<th>O</th>
<th>Te</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu${1.84}$S${0.37}$Te$_{0.63}$</td>
<td>9.9</td>
<td>60.1</td>
<td>0</td>
<td>0.94</td>
<td>12.11</td>
<td>16.94</td>
<td>100.00</td>
</tr>
</tbody>
</table>

When replacing tellurium with sulfur in copper telluride, the band gap gradually changes. This leads to a change in both the equilibrium concentration of charge carriers and the values of the Seebeck coefficient.

Figure 1 shows the results of a study of the Seebeck coefficient of the sample Cu$_2$S$_{0.5}$Te$_{0.5}$. In general, with increasing temperature, the thermo-EMF coefficient increases, but there are small steps in the temperature dependence at 540 K, 620 K and 700 K. The α values are significantly higher than in Cu$_2$Te, but slightly lower than in Cu$_2$Te.

The thermo-EMF coefficient, as is known, directly depends on the position of the Fermi level and on the scattering factor of charge carriers. In the materials under study, it is possible to determine electrochemically the relative height of the Fermi electron level directly during the experiment on measuring thermo-EMF.

![Figure 1. Temperature dependence of the coefficient of electronic thermo-emf of a coarse-grained sample Cu$_2$S$_{0.5}$Te$_{0.5}$](image)

Figure 2 shows the temperature dependence of the EMF (E) of the electrochemical cell Cu/CuBr/Cu$_2$S$_{0.5}$Te$_{0.5}$/Pt, which essentially shows the movement of the Fermi electron level in the studied phase Cu$_2$S$_{0.5}$Te$_{0.5}$ relative to the Fermi level of electrons in the copper electrode with increasing temperature.

The break in the dependence E(T) at 620 K is associated with a phase transition in CuBr, since at (600–620) K it completes the transition to a high-temperature superionic phase. Above 630 K, a linear dependence E(T) is observed, which makes it possible to determine the entropy of copper atoms in a sample by the slope of the graph according to the method described in [9].
Investigation of thermoelectric properties …

Figure 2. Temperature dependence of the EMF of an electrochemical cell Cu/CuBr/Cu$_2$S$_{0.5}$Te$_{0.5}$/Pt

Figure 3 shows the dependence of the coefficient of thermal EMF of the alloy Cu$_2$S$_{0.5}$Te$_{0.5}$ on the EMF Cu/CuBr/Cu$_2$S. Figure 3 — Dependence of the thermo-EMF coefficient of coarse-grained 5Te$_{0.5}$/Pt. The dependence has a break at 130 mV, which corresponds to a temperature of about 680 K (according to Figure 2). From Figure 1 it can be seen that the temperature dependence of the Seebeck coefficient also has a break at 680 K.

In general, the investigated triple compounds of the Cu$_2$S$_{y}$Te$_{1-y}$ type show the values of the thermal EMF coefficient significantly lower than those of pure copper sulfide and lithium-doped copper sulfide.

Electronic conductivity and thermal EMF of Cu$_2$S$_{0.5}$Te$_{0.5}$.

Figure 4 shows the temperature dependence of the electron conductivity of coarse-grained Cu$_2$S$_{0.5}$Te$_{0.5}$.

In general, the investigated triple compounds of Cu$_2$S$_{y}$Te$_{1-y}$ type show the values of the thermal EMF coefficient significantly lower than those of pure copper sulfide and lithium-doped copper sulfide.
The thermal conductivity of Cu$_2$S$_{0.5}$Te$_{0.5}$. Figure 5 shows the thermal conductivity results of three alloys of the Cu$_2$S$_{0.5}$Te$_{0.5}$ triple system. Low thermal conductivity values were found (from 0.4 to 0.6 W m$^{-1}$K$^{-1}$).

Thermoelectric efficiency of Cu$_2$S$_y$Te$_{1-y}$.

Figure 6 shows the temperature dependence of the thermoelectric efficiency ZT of coarse-grained Cu$_2$S$_{0.5}$Te$_{0.5}$. The observed values of thermoelectric efficiency — 0.25 at 400$^\circ$ C allow us to hope for the possibility of improving the characteristics of samples of this composition to acceptable values for practical thermoelectric devices by selecting the optimal alloying.
Conclusion

To optimize the thermoelectric properties of the materials, the substitution of tellurium with nonstoichiometric copper sulfide was used.

The materials obtained are of particular interest for use as a catalyst (the most important components of a fuel cell).

Nanostructuring was used to reduce the thermal conductivity of materials, which has a positive effect on the thermoelectric efficiency of the material. For the studied composition, nanostructured samples showed a decrease in thermal conductivity by (25–30) % and a slight increase in the thermal emf coefficient compared with large-crystal samples. Low thermal conductivity was found in the range (0.3–1.1) W m\(^{-1}\) K\(^{-1}\) with a conductivity above 1000 ohms\(^{-1}\)cm\(^{-1}\). However, it was not possible to obtain simultaneously high values of the Seebeck coefficient for the non-stoichiometric composition studied by us. Since the thermoelectric, electrical and thermal properties of chalcogenides are very sensitive to non-stoichiometry of the composition, it is possible that higher indicators of thermoelectric efficiency can be achieved by selecting the optimal degree of non-stoichiometry of the composition [10–12].

Acknowledgments

The Science Committee of the Republic of Kazakhstan, which is part of the Ministry of Science and Higher Education, provided funding for this research (No. AP14871197).

References

Исследование термоэлектрических свойств нанокристаллических халькогенидов меди

Современные усилия исследователей направлены на разработку топливных элементов, характеризующихся высокой эффективностью, низкой стоимостью и экологичностью, которые во многом зависят от свойств соответствующих материалов каталитаторов — важнейших компонентов топливного элемента. Кatalитаторы на основе халькогенидов металлов, преимущественно на основе S, обладают активно стью в ускорении реакции восстановления кислорода, сравнимой с активностью Pt в H₂SO₄. В статье использована методика компактирования порошковых материалов и получены объемные образцы. Получены фракции нанодисперсного порошка со средним размером частиц (50–100) нм. Значения коэффициента термо-эдс (порядка 0,08 м В/К) получены для исследуемого сплава с малой дефектностью по катионной подрешетке типа Cu₂S₀.₅Te₀.₅. Установлено, что уменьшение размеров зерен приводит к значительному снижению электронной проводимости для всех исследуемых образцов. Авторами представлены результаты исследования термоэлектрических свойств тройного сплава Cu₂S₀.₅Te₀.₅. Для исследованного состава было получено снижение теплопроводности на 25–30 % и небольшое коэффициент термо-эдс по сравнению с крупнокристаллическими образцами. Обнаружена низкая теплопроводность в диапазоне 0,3–1,1 Вт м⁻¹К⁻¹ при проводимости выше 1000 Ом⁻¹см⁻¹. Для исследуемого образца Cu₂S₀.₅Te₀.₅ — термоэлектрическая эффективность ZT = 0,25 при 400 °C, что позволяет надеяться на возможность улучшения характеристики образцов этого состава до приемлемых величин для практических термоэлектрических устройств за счет подбора оптимального легирования.

Ключевые слова: термоэлектрические материалы, сульфид меди, кристаллическая структура, проводимость, диффузия, теплопроводность, коэффициент Зеебека, суперониды проводники.

Information about authors

Kubenova, M.M. — PhD, Research teacher, Department of Standardization and Certification, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. ORCID: https://orcid.org/0000-0003-2012-2702
Investigation of thermoelectric properties ...

Kuterbekov, K.A. — Doctor of physical and mathematical sciences, Professor of the International Department of Nuclear Physics, new materials and technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. ORCID: https://orcid.org/0000-0001-7116-1520

Balapanov, M.Kh. — Doctor of physical and mathematical sciences, Professor of the Department of General Physics, Ufa University of Science and Technology, Ufa, Russia. ORCID: https://orcid.org/0000-0001-7885-9462

Ishembetov, R.Kh. — Candidate of physical and mathematical sciences, Docent of the Department of General Physics, Ufa University of Science and Technology, Ufa, Russia. ORCID: https://orcid.org/0000-0002-0938-3998

Kabdrakhimova, G.D. — PhD, Associate professor of the International Department of Nuclear Physics, new materials and technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. ORCID: https://orcid.org/0000-0003-2453-1028

Alina, R.A. — Doctoral student, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.

Bulatova, D. — Student, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.

Tatay, M. — Student, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.

Yelibayev, O. — Student, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.