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Structure and properties of steel coating ligated zirconium 

The paper presents experimental results on the structure and properties of coatings obtained while spraying a 
zirconium cathode and cathode steel 12X18H10T. The coatings were deposited in an atmosphere of nitrogen 
to the substrate 45. The coating of steel 12X18H10T + Zr in a nitrogen gas atmosphere has a high zirconium 
content of 3 times the iron content and the nitrogen content is 4. 12X18H10T + Zr coating in a gas atmos-
phere of argon and nitrogen have a columnar structure characteristic of single-phase films. To explain the ob-
served structures are considered two mechanisms: the mechanism of concentration supercooling and the 
mechanism of propagation of dislocations due to the occurrence of thermal stresses in the coating. In the first 
step of coating thermal stresses do not have time to develop and the main role is making mechanism concen-
tration supercooling, and in the second stage — both mechanisms. 
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Introduction 

At the present stage of development of mechanical engineering, including mining and oil, metal-
working equipment effectiveness is largely dependent on the performance of cutting tools. One of the most 
effective methods of increasing the efficiency of the cutting tool is to apply its surface wear-resistant coat-
ings [1, 2]. 

The first cutting inserts coated appeared on the foreign market in 1968, when the Swedish company 
«Sandvik Koromant» was developed and put into production a method of deposition of titanium carbide to 
carbide tools. In 1971, the company Teledyne Firth Sterlig (USA) have been received from the titanium ni-
tride coating. In the Moscow Institute of Steel and Alloys in 1971 it developed a method for depositing a 
coating of niobium carbide. 
In subsequent years, researchers in many countries (USA, France, Japan, Britain, Germany, etc.) Developed 
the technology application of various coatings for various applications. However, technology is not revealed 
in the press, and not published. Most foreign firms followed the way of providing services for the sale with-
out coating technologies. 

The most widely used in the industry find monolayer singletons wear-resistant coatings. However, in 
some cases, the efficiency of such an instrument is insufficient. In recent years, the interest of researchers has 
shifted to producing multi-layer and multi-element surfaces. 

This paper presents the results of research of multi-coatings obtained by ion-plasma method. 

The structure and properties of thin films comprising zirconium 

Zirconium nitride were investigated in many studies, of which we mention the work [3–5]. Figure 1 
shows a cross-section of the film ZrN, deposited on a substrate made of stainless steel AISI 316. There is a 
columnar structure. Nanoindentation results [3] showed that the hardness of the film is not related to its 
thickness. The thickness of the film significantly affect its roughness, grain size and electrical resistance. 

Figure 2 shows an AFM image of the coating ZrN, obtained by reactive magnetron sputtering. There 
are 3 phases of zirconium nitride ZrN, Zr3N4 and ZrN2. With increasing nitrogen partial pressure prevails 
education phase ZrN. 

In [6] we investigated the coating Zr–Cu–N, representing the new material type metal nitride coating 
nanocrystalline (nc-MeN) / metal. The cut of the coating is shown in Figure 3, which shows that in this case, 
a columnar structure. The copper content of such coatings is about 2 at.%. But this leads to high elasticity 
coatings equal to about 80 %. The microhardness of the coating is about 40 GPa. 
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Figure 1. Slice ZrN coating structure [3] 

 

 

Figure 2. AFM images ZrN [5] 

 

Figure 3. Slice coating Zr–Cu–N [6] 
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In [7] studied the properties of coatings Zr1-xAlxN. It is shown that there is an fcc structure. Education 
hcp structures characteristic of AlN, Here, there does not occur. 

In [8, 9] investigated the coating Zr–Ni–N, obtained by magnetron sputtering target. It was found that 
the increase in hardness occurs in two cases (Fig. 4): (1) a material consisting of a mixture of fine grains of 
different crystallographic orientations, and (2) a material consisting of nanocolumns perpendicularly film / 
substrate interface. 

 

Figure 4. Electron microscopy image of two types of films Zr–Ni–N [9] 

They were investigated and other types of coatings with zirconium: Zr–Ti–Cu–N [10], Zr–Y–N [11], 
Zr–Si–N [12], and others. In most cases, the hard coatings obtained with a microhardness of more than 40 
GPa and having a grain size less than 20 nm. 

Objects and methods of the experiment 

The coating used zirconium cathodes and cathodes made of steel 12X18H10T. With these applied coat-
ings to cathodes installation HHB steel for steel substrate 45 in a gas atmosphere of argon and nitrogen for 
40 minutes at a current of I = 80 A, the reference voltage V = 200 V and a gas pressure in the chamber  
P = 5·10–3 Pa. 

Electron microscopic study was conducted by a scanning electron microscope MIRA 3 firms TESCAN. 
The optical microstructure was investigated on metallographic microscope Epikvant, but at the nanoscale an 
atomic force microscope NT-206. By mathematical processing of energy-dispersive spectra of a special pro-
gram PHI-RHO-Z were determined concentrations of elements. 

Experimental results 

Figures 5 and 6 show the AFM images of the coatings obtained in argon and nitrogen. Figure 7 shows 
an electron-microscopic image of argon and nitrogen. 
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а) 

 
b) 

Figure 5. AFM image of the coating 12X18H10T + Zr in 1D (a) and 3D (b) projections of argon 

 
а) 

 
b) 

Figure 6. AFM image 12X18H10T + Zr coating in 1D (a) and 3D (b) under nitrogen projections 

 
а)  

b) 

Figure 7. REM-cover image 12X18H10T + Zr in an argon atmosphere (a) and nitrogen (b) 
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Figure 8. XPS 12X18H10T+Zr coating in nitrogen 

Tables 1 and 2 show the elemental composition of the coatings in its two points of the experimental da-
ta of XPS (Fig. 8). 

T a b l e  1  

The elemental composition of the coating 12X18H10T + Zr in nitrogen 

Element Line type 
Conventional 
concentration 

The ratio 
k 

Weight. % Sigma weight % 

C K series 1.43 0.01433 3.28 0.48 
N K series 30.10 0.05358 10.36 0.98 
O K series 2.71 0.00913 1.56 0.31 
Ti K series 0.71 0.00713 0.23 0.06 
Cr K series 28.94 0.28939 8.77 0.17 
Mn K series 2.25 0.02247 0.70 0.10 
Fe K серия 83.77 0.83775 25.82 0.39 
Ni K серия 11.91 0.11912 3.69 0.15 
Zn K серия 0.00 0.00000 0.00 0.00 
Zr L серия 118.27 1.18270 42.84 0.61 
Nb L серия 7.94 0.07940 2.75 0.33 

Amount    100.00  
 

T a b l e  2  

Elemental composition of the coating 12X18H10T + Zr in nitrogen (another point) 

Element Line type 
Conventional 
concentration 

The ratio 
k 

Weight. % Sigma weight % 

N K series 35.23 0.06272 12.53 0.82 
Ti K series 0.76 0.00759 0.26 0.06 
Cr K series 28.24 0.28243 9.00 0.16 
Mn K series 2.65 0.02652 0.87 0.10 
Fe K series 75.61 0.75606 24.37 0.31 
Ni K series 10.36 0.10359 3.34 0.15 
Zn K серия 0.00 0.00000 0.00 0.00 
Zr L серия 131.76 1.31757 49.63 0.54 

Amount    100.00  
 

The table shows a high zirconium content of 3 times the iron content and the nitrogen content is 4. 
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Циркониймен легирленген болат жабындысының  
құрылымы жəне қасиеттері 

Мақалада 12Х18Н10Т болат жəне циркон катодтары бір уақытта ыдырату кезінде алынған 
жабындының құрылымы мен қасиеттері бойынша эксперименталды нəтижелері келтірілген. 
Жабындылар 45 болат астына азоттың ортасында берілген. 12Х18Н10Т+Zr жабындысына газды 
азоттың ортасында жоғары цирконий сипатында 3 есе жоғарлайтын темір жəне 4 азот сипаты тəн. 
12Х18Н10Т+Zr жабындысы азот жəне аргон газды ортасында бірфазалық қабыршақ үшін бағаналық 
сипатқа ие. Байқалған құрылымның түсіндірмесі үшін екі тетік қарастырылады: концентрациялық 
суытылу тетігі жəне дислокацияның көбею тетігі есебіне қатысты термиялық кернеу жабындысы. Бас 
жабынды пайда болуының бірінші кезеңінде термиялық кернеулер дамуға үлгермейді жəне негізгі 
рөлді концентрациялы суыту тетігі енгізеді, ал екінші кезеңде — екі тетік те əрекет етеді. 
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Структура и свойства стальных покрытий, легированных цирконием  

В работе приведены экспериментальные результаты по структуре и свойствам покрытий, полученных 
при одновременном распылении циркониевого катода и катода из стали 12Х18Н10Т. Покрытия нано-
сились в среде азота на подложку из стали 45. Покрытие 12Х18Н10Т+Zr в газовой среде азота имеет 
высокое содержание циркония, в 3 раза превышающее содержание железа и в 4 — содержание азота. 
Покрытия 12Х18Н10Т+Zr в газовой среде азота и аргона имеют столбчатую структуру, характерную 
для однофазных пленок. Для объяснения наблюдаемой структуры рассматриваются два механизма: 
механизм концентрационного переохлаждения и механизм размножения дислокаций за счет возник-
новения в покрытии термических напряжений. На первой стадии образования покрытия термические 
напряжения не успевают развиваться, и основную роль играет механизм концентрационного переох-
лаждения, а на второй стадии действуют оба механизма. 

 
 
 




