Research of regimes of applying coats by the method of plasma electrolytic oxidation on Ti-6Al-4V

Authors

  • B.K. Rakhadilov
  • D.R. Baizhan
  • Zh.B. Sagdoldina
  • K. Torebek

DOI:

https://doi.org/10.31489/2022ph1/99-106

Keywords:

plasma electrolytic oxidation, anatase, rutile, structure, phase

Abstract

In this work, ceramic coatings were formed on Ti6Al4V titanium alloy using a technique of plasma electrolytic oxidation. Plasma electrolytic oxidation was carried out in electrolytes with different chemical compositions and the effect of the electrolyte on the macro-and microstructure, pore size, phase composition and wear resistance of coatings was estimated. Three types of electrolytes based on sodium compounds were used, including phosphate, hydroxide, and silicate. The composition of the electrolyte affects the intensity and size of microcharges and the volume of gas release of various electrolytes. The plasma electrolytic oxidation processes were carried out at a fixed voltage (270 V) for 5 minutes. The results showed that the coating was mainly composed of rutile- and anatase TiO2, but a homogeneous structure with lower porosity and a large number of crystalline anatase phases was obtained in the coating prepared in the silicate-based electrolyte. The diffractogram electrolytes did not reveal the peaks of the crystalline phases associated with the PO43—and SiO32— anions. This means that these anions included only oxygen in the coatings. The morphology and phase composition of the samples were studied using a scanning electron microscope and an X-ray diffractometer, respectively. Wear resistance was evaluated by the “ball-disc” method on the TRB3 tribometer. The wear resistance of various coatings formed on Ti6Al4V titanium alloys showed completely different wear resistance. The lowest coefficient of friction (µ = 0.3) was demonstrated by the coating obtained based on phosphate. This may be due to a large number of crystal phases of rutile. The sample prepared in a hydroxide-based electrolyte showed a high wear coefficient (µ=0.52). This effect can be obtained by eliminating surface defects (microcracks and micropores).

Additional Files

Published

2022-03-30

Issue

Section

PHYSICS OF THE CONDENSED MATTER

Received

2023-11-23