Gas content of the D6 coal seam

Authors

  • S.B. Imanbaeva
  • A.D. Mausymbaeva
  • V.M. Yurov
  • V.S. Portnov
  • N.V. Reva
  • A.D. Sultan

DOI:

https://doi.org/10.31489/2021ph1/18-25

Keywords:

methane, particle size distribution, fracturing, drainage, well, energy of destruction

Abstract

The article deals with the issues of gas content of the most thick and stable D6 coal seam in the Tentek region. This complex structure seam is dangerous in underground mining for gas and dust outbursts, it consists of coal packs separated by interlayers of mudstones, while the lower layer 0.5-1.5 m thick is very soft, has a strong shear disturbance and is most saturated with methane. Extraction of coalbed methane is a necessary process to ensure the safety of mining operations, to reduce its emissions into the atmosphere, and to utilize it as a fuel and a product for obtaining synthetic materials. The regularity of changes in the particle size distribution of the upper thick pack and the lower thin pack indicates the difference in small coal particles in them, while there are much more of them in the lower layer therefore, the specific surface is larger, which is an important factor of the adsorption processes intensity in the accumulation of methane, and during the gas drainage from the seam. The activation energy of methane from carbohydrate has been determined. A quadratic relationship between methane gas evolution and its initial concentration has been shown. In carbohydrate, it depends on the energy of external forces. A complex relationship has been established between the gas pressure in the coal seam and its concentration and characteristics of the «coal-methanenatural moisture» system. Regularities of changing the methane content of the coal seam depending on its fracturing formed due to the effect of the energy of destruction and the energy appearing with increasing the area of a crack in the coal, have been obtained. The effect of the coal mineral composition on the gas content has been shown.

Additional Files

Published

2021-03-30

Issue

Section

TECHNICAL PHYSICS

Received

2023-11-22