Photocatalytic water splitting of nanocomposite materials based on TiO2 and rGO nanorods
DOI:
https://doi.org/10.31489/2021ph3/115-121Keywords:
nanorods, graphene oxide, specific surface area, photo-splitting of waterAbstract
The paper presents the results of a study of films formed by titanium dioxide nanorods and deposited on their surface of reduced graphene oxide by electrochemical deposition. Nanostructured films based on TiO2 nanorods were prepared in a 100 ml stainless steel autoclave with a fluoroplastic insert from a solution containing 35 ml of deionized water (H2O), 35 ml of hydrochloric acid (HCl) (36.5 %, Sigma–Aldrich) and 0.25 ml of titanium butylate C16H36O4Ti (97 %, Sigma–Aldrich). The addition of reduced graphene oxide to the structure of titanium dioxide nanorods increases the specific surface area of nanostructures from 29.3 m2/g to 63.1 m2/g. Calculations based on the film impedance spectra have shown that the optimal deposition time of reduced graphene oxide on the surface of TiO2 nanorods is 3 minutes, since it has a low recombination coefficient and a long electron lifetime. Studies of the photocatalytic activity of nanomaterials and registration of the released hydrogen and oxygen gases have shown that when the films are irradiated for 5 hours, the amount of hydrogen released varies from 50 to 225 mmol/cm2.